A monolithic optical injection-locked (MOIL) DFB laser with large stable injection locking range is experimentally demonstrated using the side-mode injection locking technique. The low-frequency roll-off in the MOIL DFB laser is suppressed significantly. The relaxation oscillation frequency is measured to be 26.84 GHz and the intrinsic 3-dB response bandwidth is more than 30 GHz, which is about 20 GHz higher than that of the free running DFB laser. The nonlinear distortions, including the 1-dB compression point, second harmonic distortion (2HD) and third-order intermodulation distortion (IMD3), are also suppressed significantly. A simple radio-over-fiber system transmitting 40 Msymbol/s 32-QAM signal with 6 GHz carrier is achieved using the MOIL DFB laser. After 50 km transmission, the average error vector magnitude (EVM) of the whole link is 2.94% in injection locked state, while the EVM in free running DFB laser is 5.25% as a comparison. To our knowledge, this is the first time that the MOIL DFB laser is realized utilizing the side-mode injection locking method.
Photonic generation of linearly chirped microwave waveforms (LCMWs) using a monolithic integrated three-section laser is experimentally demonstrated in this work. All three sections of the laser cavity, including the front DFB section, phase section and rear DFB section, have the same active layer, which can avoid the butt-joint re-growth process. The gratings in both DFB sections are fabricated by the Reconstruction Equivalent Chirp technique, which can significantly decrease the difficulties in realizing precise grating structure. By adjusting the integrated three-section semiconductor laser to work in the period-one (P1) state and applying a sweeping signal to the front DFB section, the beating signal, i.e., an LCMW with a large time bandwidth product (TBWP), can be generated. In the current proof-of-concept experiment, an LCMW with a large TBWP up to 5.159 × 10 is generated, of which the bandwidth and the duration time are 6.7 GHz and 77 us respectively. The compressed pulse width is 150 ps. In addition, by adjusting the bias currents of the rear DFB section and front DFB section as well as the amplitude of the sweeping signals, LCMWs with tunable center frequency and tunable bandwidth can be achieved.
Tunable microwave generation and frequency up-conversion are demonstrated utilizing a monolithically integrated two-section DFB laser. The frequency of the microwave signal is tuned from 13 GHz to 40 GHz, which can be further improved by adjusting the wavelengths of the DFB lasers. Utilizing the sideband optical injection locking technique, frequency-doubled microwave signals with low phase noise of −100.9 dBc/Hz at 10 kHz and narrow linewidth of 102 Hz are obtained. In addition, the tunable range of frequency-doubled and frequencyquadrupled microwave signals are also investigated respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.