Scissors mechanisms are commonly used in safety engineering during the construction of temporary structures, owing to their inherent advantages of foldability, transformability, and reusability. We effectively utilized these scissors mechanism features to develop a lightweight, deployable emergency Mobile Bridge (MB) based on optimization, and control of the folding structure. Here, we discuss the problems of optimal reinforcement layout for the MB by formulating and solving three optimization problems, namely: (a) the load capacity maximization problem, (b) the weight minimization problem, and (c) coupling the load capacity maximization problem and the weight minimization problem. The potential benefits resulting from the application of reinforcement were evaluated using a combination of finite element analysis and an optimization algorithm based on the differential evolution method. The results demonstrate the significant positive influence of the additional reinforcing members. In particular, the limit load was increased by over 10 times, while the weight was decreased to approximately half. The proposed methodology enabled the development of a substantially improved version of the MB characterized by a higher load capacity and lower weight in comparison to the initial bridge design.
Many natural disasters cause not only critical situations for facilities and resident's life, but also significant damage to economy. It is obvious that quick rescue action must be undertaken and that there are many problems due to the occurrence of secondary disasters at rescue worksite. Basing on the previous study of deployable structures and the concept of the multi-folding microstructures, we propose a new type of foldable bridge in form of scissor structure called the Mobile Bridge TM . In this paper, we discuss the vehicle passing test performed on the real-scale Mobile Bridge in order to evaluate its mechanical characteristics and application limits. Moreover, we verified the compatibility between the result of calculations and experiments by means of theoretical modelling. The results show that it is sufficient to treat the load as equivalent nodal forces applied at the joints without including the stiffness of the deck.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.