A detailed chemical kinetic model has been developed to theoretically predict the pyrolysis behavior of phenol‐type monolignol compounds (1‐(4‐hydroxyphenyl)prop‐2‐en‐1‐one, HPP; p‐coumaryl alcohol, 3‐hydroxy‐1‐(4‐hydroxyphenyl)propan‐1‐one, HHPP; 1‐(4‐hydroxyphenyl)propane‐1,3‐diol, HPPD) released from the primary heterogeneous pyrolysis of lignin. The possible thermal decomposition pathways involving unimolecular decomposition, H‐addition, and H‐abstraction by H and CH3 radicals were investigated by comparing the activation energies calculated at the M06–2X/6–311++G(d,p) level of theory. The results indicated that all phenol‐type monolignol compounds convert to phenol by side‐chain cleavage. p‐Coumaryl alcohol decomposes into phenol via the formation of 4‐vinylphenol, whereas HPP, HHPP, and HPPD decompose into phenol via the formation of 4‐hydroxybenzaldehyde. The pyrolytic pathways focusing on the reactivity of the hydroxyl group in HPP and producing cyclopentadiene (cyc‐C5H6) were also investigated. The transition state theory (TST) rate constants for all the proposed elementary reaction channels were calculated at the high‐pressure limit in the temperature range of 300–1500 K. The kinetic analysis predicted the two favorable unimolecular decomposition pathways in HPP: the one is the dominant channel below 1000 K to produce cyc‐C5H6, and the other is above 1000 K to yield phenol (C6H5OH).
The theoretical aspects of the development of a chemical kinetic model for guaiacol and catechol pyrolysis are presented to describe the pyrolysis behaviors of the individual lignin-derived components. The possible pyrolysis pathways involving both unimolecular and bimolecular decomposition were investigated by the potential energy surfaces (PES) calculated at CBS-QB3 level. The high-pressure limiting rate constants of each elementary reaction step were evaluated based on the transition state theory (TST) to determine the dominant pyrolysis pathways. The kinetic analysis results predicted the most favorable catechol unimolecular decomposition pathways, where catechol isomerization to 2-hydroxycyclohexa-2,4-dien-1-one occurred via migration of the hydroxyl H atom, followed by decomposition into 1,3-cyclobutadiene, acetylene, and CO. In the case of the bimolecular reaction of catechol, a hydrogen radical is coupled to the carbon atom in the benzene ring, leading to the formation of phenol and a hydroxyl radical through dehydroxylation. On the other hand, guaiacol is likely to form catechol and phenol via the O-CH homolysis and coupling of a hydrogen radical to the carbon atom with the methoxyl group, respectively.
This paper theoretically investigated a large number of reaction pathways and kinetics to describe the vapor-phase pyrolytic behavior of several syringol-type monolignol compounds that are derived from the primary pyrolysis of lignin: 1-(4-hydroxy-3,5-dimethoxyphenyl)prop-2-en-1-one (HDPP), sinapyl alcohol, 3-hydroxy-1-(4-hydroxy-3,5-dimethoxyphenyl)propan-1-one (HHDPP), 1-(4-hydroxy-3,5-dimethoxyphenyl)propane-1,3-diol (HDPPD), and syringol. The possible pyrolytic pathways involving unimolecular decomposition, addition, and abstraction reactions were investigated by comparing the energy barriers calculated at the B3LYP/6-311++G(d,p) level. In the proposed pathways, all syringol-type monolignols containing a side chain undergo its cleavage to form syringol through the formation of syringaldehyde or 4-vinylsyringol. Syringol is then converted into two products: (a) pyrogallol via the homolysis of the O-CH bond and hydrogenation or (b) guaiacol via addition of an H atom with a carbon bearing methoxyl group in syrignol and the subsequent demethoxylation. The pyrolytic pathways of pyrogallol are classified into two processes: (a) the concerted dehydrogenation of the two hydroxyl H atoms and the unimolecular decomposition to produce acetylene (CH), ethynol (CHOH), and CO or (b) the displacement of an OH with H to produce catechol and resorcinol. Additionally, HDPP undergoes O-CH bond cleavage to form but-1-en-3-yne. The high-pressure limit rate constants for all the proposed elementary reaction steps were evaluated on the basis of transition state theory.
On the cover: The cover image, by Yuki Furutani et al., is based on the Article Computational Study on the Thermal Decomposition of Phenol‐Type Monolignols, DOI: https://doi.org/10.1002/kin.21164.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.