Two male cats were presented with penile part of urethra injury due to dog attacks to the perineum and genitalia area. Chronic wound around a remained penile part of urethra due to the dog bite and perineal area was evident due to urine irritation. The buccal mucosa was harvested and subsequently placed on the granulation tissue of the wound to reconstruct the urinary passage. The buccal mucosal graft completely attached to the skin and urethra without any complications. From the follow-up at 3 months, the cats were able to urinate normally and the skin irritation from urine was resolved. In summary, the buccal mucosa is a good graft source and is suitable for the reconstruction of the urinary passage in severe and complicated cases of penile part of urethra injury in male cats.
Culcioides biting midges (Diptera: Ceratopogonidae) are vectors of various veterinary pathogens. Suction light traps are one of the most widely used tools for vector surveillance. The present aim was to compare the efficiency for the collection of Culicoides species between newly developed 3D-printed ultraviolet (Mahidol University (MU) UV LED) and green light-emitting diode (Mahidol University (MU) Green LED) traps baited with CO2 and UV LED Center for Disease Control (CDC) light trap (BioQuip 2770) baited with CO2. The experiment consisted of two replicates of a 3 × 3 Latin square design in each three sampling locations (Location 1, 2, 3 and 4, 5, 6), for 12 nights between 26th July and 7th August 2020 in Thailand. Results showed that efficiency of the MU UV LED light trap was equivalent to that of the BioQuip 2770 trap for the collection of Culicoides. Meanwhile, the efficiency of the MU Green LED light trap was lower than that of both UV LED light traps. In the analysis of Culicoides species composition and sex–age grading, a similar pattern was observed among three light traps except for Culicoides actoni Smith. The newly developed 3D-printed UV LED light trap demonstrated the following advantages over the commercial light trap: cost saving to obtain multiple units, ease of customization and standardization, and increased availability by end-users. Although further assessments in different environmental conditions are needed, this 3D-printed light trap design could minimize the constrains in vector surveillance programs worldwide.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.