Mechanically responsive crystals have been increasingly explored, mainly based on photoisomerization. However, photoisomerization has some disadvantages for crystal actuation, such as a slow actuation speed, no actuation of thick crystals, and a narrow wavelength range. Here we report photothermally driven fast-bending actuation and simulation of a salicylideneaniline derivative crystal with an o-amino substituent in enol form. Under ultraviolet (UV) light irradiation, these thin (<20 μm) crystals bent but the thick (>40 μm) crystals did not due to photoisomerization; in contrast, thick crystals bent very quickly (in several milliseconds) due to the photothermal effect, even by visible light. Finally, 500 Hz high-frequency bending was achieved by pulsed UV laser irradiation. The generated photothermal energy was estimated based on the photodynamics using femtosecond transient absorption. Photothermal bending is caused by a nonsteady temperature gradient in the thickness direction due to the heat conduction of photothermal energy generated near the crystal surface. The temperature gradient was calculated based on the one-dimensional nonsteady heat conduction equation to simulate photothermally driven crystal bending successfully. Most crystals that absorb light have their own photothermal effects. It is expected that the creation and design of actuation of almost all crystals will be possible via the photothermal effect, which cannot be realized by photoisomerization, and the potential and versatility of crystals as actuation materials will expand in the near future.
Molecular crystals have shown remarkable adaptability in response to a range of external stimuli. Here, we survey this emerging field and provide a critical overview of the experimental, computational and instrumental tools being used to design and apply such materials.
Structural phase transitions induced by external stimuli such as temperature, pressure, electromagnetic fields, and light play crucial roles in controlling the functions of solid-state materials. Here we report a new phase transition, referred to as the photo-triggered phase transition, of a photochromic chiral salicylideneamine crystal. The crystal, which exhibits a thermal single-crystal-to-single-crystal phase transition which is reversible upon heating and cooling, transforms to the identical phase upon light irradiation at temperatures lower than the thermal transition temperature. The photo-triggered phase transition originates from the strain of trans-keto molecules produced by enol-keto photoisomerization owing to the small energy barrier associated with changes in the crystal structure. The photo-triggered phase is metastable and returns to the initial stable phase via back isomerization from the trans-keto to enol form.
Mechanically responsive materials have been investigated extensively over the past two decades. Diversification of actuation modes is essential for the practical application of mechanical materials. Polymorphic crystals with different crystal structures composed of the same compound can exhibit distinct mechanical motions. Here, we focused on two polymorphs of a salicylideneaniline derivative with a 4-fluoro substituent in enol form, 1α and 1β, and investigated their different photomechanical behaviors. Under ultraviolet (UV) light irradiation, the thin plate-like 1α crystal bent away gradually and strongly from the light source, with some twist caused by enol–keto photoisomerization. In contrast, the thin, needle-like 1β crystal did not bend by photoisomerization; however, the thick 1β crystal bent away quickly from the light source because of the photothermal effect, ultimately achieving 500 Hz high-speed bending under pulsed UV laser irradiation. Moreover, the thick plate-like 1α crystal exhibited two-step motion: fast bending forward by the photothermal effect and then slow bending away by photoisomerization. We succeeded in creating four motions using two polymorphic crystals and two distinct mechanisms, thereby providing a novel approach to diversify the mechanical motions of molecular crystals and expanding the potential and versatility of molecular crystals as actuation materials.
High frequency mechanical bending of the crystal was achieved based on the photothermal effect upon light irradiation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.