Hepcidin, a liver-derived iron regulatory protein, plays a crucial role in iron metabolism. It is known that gender differences exist with respect to iron storage in the body; however, the effects of sex steroid hormones on iron metabolism are not completely understood. We focused on the effects of the female sex hormone estrogen on hepcidin expression. First, ovariectomized (OVX) and sham-operated mice were employed to investigate the effects of estrogen on hepcidin expression in an in vivo study. Hepcidin expression was decreased in the livers of OVX mice compared to the sham-operated mice. In OVX mice, bone morphologic protein-6 (BMP6), a regulator of hepcidin, was also found to be downregulated in the liver, whereas ferroportin (FPN), an iron export protein, was upregulated in the duodenum. Both serum and liver iron concentrations were elevated in OVX mice relative to their concentrations in sham-operated mice. In in vitro studies, 17β-estradiol (E2) increased the mRNA expression of hepcidin in HepG2 cells in a concentration-dependent manner. E2-induced hepatic hepcidin upregulation was not inhibited by ICI 182720, an inhibitor of the estrogen receptor; instead, hepcidin expression was increased by ICI 182720. E2 and ICI 182720 exhibit agonist actions with G-protein coupled receptor 30 (GPR30), the 7-transmembrane estrogen receptor. G1, a GPR30 agonist, upregulated hepcidin expression, and GPR30 siRNA treatment abolished E2-induced hepcidin expression. BMP6 expression induced by E2 was abolished by GPR30 silencing. Finally, both E2 and G1 supplementation restored reduced hepatic hepcidin and BMP6 expression and reversed the augmentation of duodenal FPN expression in the OVX mice. In contrast, serum hepcidin was elevated in OVX mice, which was reversed in these mice with E2 and G1. Thus, estrogen is involved in hepcidin expression via a GPR30-BMP6-dependent mechanism, providing new insight into the role of estrogen in iron metabolism.
T. Iron reduction by deferoxamine leads to amelioration of adiposity via the regulation of oxidative stress and inflammation in obese and type 2 diabetes KKAy mice.
Renal fibrosis plays an important role in the onset and progression of chronic kidney diseases (CKD). Although several mechanisms underlying renal fibrosis and candidate drugs for its treatment have been identified, the effect of iron chelator on renal fibrosis remains unclear. In the present study, we examined the effect of an iron chelator, deferoxamine (DFO), on renal fibrosis in mice with surgically induced unilateral ureter obstruction (UUO). Mice were divided into 4 groups: UUO with vehicle, UUO with DFO, sham with vehicle, and sham with DFO. One week after surgery, augmented renal tubulointerstitial fibrosis and the expression of collagen I, III, and IV increased in mice with UUO; these changes were suppressed by DFO treatment. Similarly, UUO-induced macrophage infiltration of renal interstitial tubules was reduced in UUO mice treated with DFO. UUO-induced expression of inflammatory cytokines and extracellular matrix proteins was abrogated by DFO treatment. DFO inhibited the activation of the transforming growth factor-β1 (TGF-β1)-Smad3 pathway in UUO mice. UUO-induced NADPH oxidase activity and p22phox expression were attenuated by DFO. In the kidneys of UUO mice, divalent metal transporter 1, ferroportin, and ferritin expression was higher and transferrin receptor expression was lower than in sham-operated mice. Increased renal iron content was observed in UUO mice, which was reduced by DFO treatment. These results suggest that iron reduction by DFO prevents renal tubulointerstitial fibrosis by regulating TGF-β-Smad signaling, oxidative stress, and inflammatory responses.
Excess iron causes oxidative stress through hydroxyl-radical production via Fenton/Haber-Weiss reactions. Recently, body iron reduction has been found to ameliorate diabetes. In the present study, we examined the protective effect of dietary iron restriction against diabetic nephropathy in the db/db mouse model of diabetic nephropathy using db/m mice as controls. The db/db mice were divided into two groups and fed a normal diet (ND) or a low-iron diet (LID). Increasing urinary albumin excretion was observed in the ND db/db mice, but this was suppressed in db/db mice with LID. Histologically, the db/db mice in the ND group had increased glomerular volume and mesangial area compared with the LID group. Augmented deposition of extracellular matrixes was decreased in db/db mice with LID. In terms of oxidative stress, increased superoxide production observed in the kidneys of the ND db/db mice was diminished in the LID group. NADPH oxidase activity and renal expression of NADPH oxidase components p22(phox) and NADPH oxidase 4 (NOX4) were augmented in the ND group, and this was abolished by LID. There were no differences in expression of renal iron importers, transferrin receptor, or divalent metal transporter-1 between db/m mice and db/db mice. The level of ferroportin, an iron exporter, increased in the kidneys of the db/db mice. Urinary iron excretion was significantly higher in ND db/db mice and was reduced in the LID group. These findings suggest that dietary iron restriction exerts a preventive effect on the progression of diabetic nephropathy partly due to the reduction of oxidative stress.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.