Since conventional molecular targeted drugs often result in side effect, the development of novel molecular targeted drugs with both high efficacy and selectivity are desired. Simultaneous inhibition of metabolically and spatiotemporally related proteins/enzymes is a promising strategy for improving therapeutic interventions in cancer treatment. Herein, we report a poly-α-L-glutamate-based polymer inhibitor that simultaneously targets proximal transmembrane enzymes under hypoxia, namely carbonic anhydrase IX (CAIX) and zinc-dependent metalloproteinases. A polymer incorporating two types of inhibitors more effectively inhibited the proliferation and migration of human breast cancer cells than a combination of two polymers functionalized exclusively with either inhibitor. Synergistic inhibition of cancer cells would occur owing to the hetero-multivalent interactions of the polymer with proximate enzymes on the cancer cell membrane. Our results highlight the potential of polymer-based cancer therapeutics.Abstract FigureFor Table of Contents only
Since conventional molecular targeted drugs often result in side effects, the development of novel molecular targeted drugs with both high efficacy and selectivity is desired. Simultaneous inhibition of metabolically and spatiotemporally related proteins/enzymes is a promising strategy for improving therapeutic interventions in cancer treatment. Herein, we report a poly-α-L-glutamate-based polymer inhibitor that simultaneously targets proximal transmembrane enzymes under hypoxia, namely, carbonic anhydrase IX (CAIX) and zinc-dependent metalloproteinases. A polymer incorporating two types of inhibitors more effectively inhibited the proliferation and migration of human breast cancer cells than a combination of two polymers functionalized exclusively with either inhibitor. Synergistic inhibition of cancer cells would occur owing to the hetero-multivalent interactions of the polymer with proximate enzymes on the cancer cell membrane. Our results highlight the potential of polymer-based cancer therapeutics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.