The Jackson shaker (js) mouse carries a recessive mutation causing phenotypes such as deafness, abnormal behavior (circling and/or head-tossing) and degeneration of inner ear neuroepithelia. Two alleles have been identified so far, the original js and js(seal). A contig of three BAC clones was isolated by positional cloning. Two of the clones rescue the js phenotype by BAC transgenesis. Analysis of transcripts in an overlapping region of the two clones revealed a gene encoding a new scaffold-like protein, Sans, that showed mutations in the two js mutants. One was a guanine nucleotide insertion in the original js allele and the other a 7-base insertion in the js(seal) allele. Both insertions are predicted to inactivate the Sans protein by frameshift mutations resulting in a truncated protein lacking the C-terminal SAM domain. Cochlear hair cells in the js mutants show disorganized stereocilia bundles, and Sans were highly expressed in inner and outer hair cells of cochlea. The existence of major motifs, ankyrin repeats and a SAM domain suggests that Sans may have an important role in the development and maintenance of the stereocilia bundles through protein-protein interaction.
NC/Nga (NC) is a newly discovered model mouse for human atopic dermatitis, NC mice showing specific symptoms such as dermatitis and overproduction of IgE. To detect the loci responsible for the onset of dermatitis in the mice, backcross (N2) progeny between (NCxMSM/MS)F1 and NC were generated, where MSM/MS is an inbred strain from Japanese wild mice, Mus musculus molossinus. Linkage disequilibrium between dermatitis and various chromosome-specific microsatellite markers was then examined in the N2 segregants with severe dermatitis. The analysis revealed that the locus of the major determinant (designated here as derm1) was tightly linked to D9Mit163, D9Mit72, D9Mit143, D9Mit103, D9Mit207, and D9Mit209, because these markers showed the highest and most significant chi2 values. Since no recombination was observed among the markers in our linkage map, a radiation hybrid (RH) panel was applied to locate the derm1 locus more precisely. The markers were separated on the RH map, and their order was D9Mit163-D9Mit72-D9Mit143-D9Mit103-D9Mit207-D9Mit209 from the centromere. Several functional candidate genes are located near the locus derm1. These candidates are Thy1, Cd3d, Cd3e, Cd3g, Il10ra, 1118, and Csk, all of which could be involved in allergic responses through effects on T-cell function. Of these candidates, Csk is the strongest for NC dermatitis, since its map position was most tightly linked to the derm1 locus.
A general polymer, poly(methyl methacrylate) (PMMA) is utilized as a unique templating agent for forming crack-free mesoporous TiO2 films by a sol–gel method. The pore morphologies were found to be controllable by varying the amount of PMMA. The PMMA-mediated mesoporous TiO2 layer has been applied for the first time to perovskite solar cells exhibiting a best power conversion efficiency of ≥14%, which is ca. three times higher than that using a TiO2 layer prepared by the same sol–gel method without the polymer addition (5.28%). Remarkably, it was superior to the reference device with mesoporous TiO2 layer prepared with conventional nanoparticle paste (13.1%). Such mesostructure-tuned TiO2 layers made by the facile sol–gel technique with a commercially available polymer additive has the great potential to contribute significantly toward the development of low-cost, highly efficient perovskite solar cells as well as other functional hybrid devices.
The disease outcome in malaria caused by the protozoan parasite Plasmodium is influenced by host genetic factors. To identify host genes conferring resistance to infection with the malaria parasite, we undertook chromosomal mapping using a whole-genome scanning approach in cross-bred mice. NC/Jic mice all died with high parasitemia within 8 days of infection with 1 x 10(5) parasitized erythrocytes. In contrast, 129/SvJ mice all completely excluded malaria parasites from the circulation and remained alive 21 days after infection. We performed linkage analysis in backcross [(NC/Jic x 129/SvJ)xNC/Jic] mice. The Pymr ( Plasmodium yoelii malaria resistance) locus was mapped to the telomeric portion of mouse Chromosome (Chr) 9. This locus controls host survival and parasitemia after infection. The Char1 locus ( P. chabaudi resistance locus 1), controlling host survival and peak parasitemia in P. chabaudi infection, was previously mapped to the same region. This host resistance locus mapping to Chr 9 may represent a ubiquitous locus controlling susceptibility to rodent malaria. Elucidation of the function of this gene will provide valuable insights into the mechanism of host defense against malaria parasite infection.
Abstract:We updated a database of microsatellite marker polymorphisms found in inbred strains of the mouse, most of which were derived from the wild stocks of four Mus musculus subspecies, M. m. domesticus, M. m. musculus, M. m.castaneus and M. m. molossinus. The major aim of constructing this database was to establish the genetic status of these inbred strains as resources for linkage analysis and positional cloning. The inbred strains incorporated in our database are A/J, C57BL/6J, CBA/J, DBA/2J, SM/J, SWR/J, 129Sv/J, MSM/Ms, JF1/Ms, CAST/Ei, NC/Nga, BLG2/Ms, NJL/Ms, PGN2/Ms, SK/CamEi and SWN/ Ms, which have not or have only been poorly incorporated in the Whitehead Institute/MIT (WI/MIT) microsatellite database. The number of polymorphic microsatellite loci incorporated in our database is over 1,000 in all strains, and the URL site for our database is located at http:// www.shigen.nig.ac.jp /mouse/mmdbj/mouse.html. Key words: database, microsatellite, mouse [1,3,4,14], and to generate congenic and consomic strains of mice [13,14]. Recently, the first phase of the mouse genome sequencing project was completed [17]. With the reports of the DNA sequence of the mouse genome, very precise map positions of the Japan Microsatellite marker polymorphisms are valuable for high-resolution mapping as the initial stage to identify mutant genes of interest by positional cloning [2], to carry out genome-wide surveys for quantitative trait loci (QTL) mapping as a part of complex trait analyses
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.