Bradykinin (BK) has been reported to be a mediator of brain damage in acute insults. Receptors for BK have been identified on microglia, the pathologic sensors of the brain. Here, we report that BK attenuated lipopolysaccharide (LPS)-induced release of tumor necrosis factor-alpha (TNF-a) and interleukin-1b from microglial cells, thus acting as an anti-inflammatory mediator in the brain. This effect was mimicked by raising intracellular cAMP or stimulating the prostanoid receptors EP2 and EP4, while it was abolished by a cAMP antagonist, a prostanoid receptor antagonist, or by an inhibitor of the inducible cyclooxygenase (cyclooxygenase-2). BK also enhanced formation of prostaglandin E 2 and expression of microsomal prostaglandin E synthase. Expression of BK receptors and EP2/EP4 receptors were also enhanced. Using physiological techniques, we identified functional BK receptors not only in culture, but also in microglia from acute brain slices. BK reduced LPS-induced neuronal death in neuron-microglia cocultures. This was probably mediated via microglia as it did not affect TNF-a-induced neuronal death in pure neuronal cultures. Our data imply that BK has anti-inflammatory and neuroprotective effects in the central nervous system by modulating microglial function.
Microglia express AMPA (α-amino-hydroxy-5-methyl-isoxazole-4-propionate)-type of glutamate (Glu) receptors (AMPAR), which are highly Ca(2+) impermeable due to the expression of GluA2. However, the functional importance of AMPAR in microglia remains to be investigated, especially under pathological conditions. As low expression of GluA2 was reported in some neurodegenerative diseases, GluA2(-/-) mice were used to show the functional change of microglial AMPARs in response to Glu or kainate (KA). Here we found that Glu-induced currents in the presence of 100 μM cyclothiazide, an inhibitor of AMPAR desensitization, showed time-dependent decrease after activation of microglia with lipopolysaccharide (LPS) in GluA2(+/+) microglia, but not in GluA2(-/-) microglia. Upon activation of microglia, expression level of GluA2 subunits significantly increased, while expression of GluA1, A3 and A4 subunits on membrane surface significantly decreased. These results suggest that nearly homomeric GluA2 subunits were the main reason for low conductance of AMPAR in activated microglia. Increased expression of GluA2 in microglia was also detected partially in brain slices from LPS-injected mice. Cultured microglia from GluA2(-/-) mice showed higher Ca(2+) -permeability, consequently inducing significant increase in the release of proinflammatory cytokine, such as TNF-α. The conditioning medium from KA-treated GluA2(-/-) microglia had more neurotoxic effect on wild type cultured neurons than that from KA-treated GluA2(+/+) microglia. These results suggest that membrane translocation of GluA2-containing AMPARs in activated microglia has functional importance and thus, dysfunction or decreased expression of GluA2 may accelerate Glu neurotoxicity via excess release of proinflammatory cytokines from microglia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.