The objective of this study is a better understandingof the relationships between reduction and continuity. Solovay reduction is a variation of Turing reduction based on the distance of two real numbers. We characterize Solovay reduction by the existence of a certain real function that is computable (in the sense of computable analysis) and Lipschitz continuous. We ask whether thereexists a reducibility concept that corresponds to H¨older continuity. The answer is affirmative. We introduce quasi Solovay reduction and characterize this new reduction via H¨older continuity. In addition, we separate it from Solovay reduction and Turing reduction and investigate the relationships between complete sets and partial randomness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.