Interactions between trees and ectomycorrhizal fungi are critical to the growth and survival of both partners. However, ectomycorrhizal symbiosis has barely been explored in endangered trees, and no information is available regarding soil spore banks of ectomycorrhizal fungi from forests of threatened trees. Here, we evaluated soil spore banks of ectomycorrhizal fungi from endangered Japanese Douglas‐fir (Pseudotsuga japonica) forests using bioassay approaches with congeneric P. menziesii and Pinus densiflora seedlings in combination with molecular identification techniques. Rhizopogon togasawariana was predominant in soil propagule banks and was found in all remaining P. japonica forests when assayed with P. menziesii, while no colonization of this fungus was observed on Pinus seedlings. Given the observed specificity of R. togasawariana for P. menziesii and its phylogenetic position within the Pseudotsuga‐specific Rhizopogon lineage, its geographical distribution is likely restricted to the remaining Japanese Douglas‐fir forests, indicating a high extinction risk for this fungus as well as its endangered host. Spore banks of R. togasawariana remained highly infective after preservation for 1 year or heat treatment at 70 °C, suggesting an ecological strategy of establishing ectomycorrhizal associations on regenerating Japanese Douglas‐fir seedlings after disturbance, as observed in other Rhizopogon–Pinaceae combinations. Therefore, the regeneration of Japanese Douglas‐fir seedlings may depend largely on the soil spore banks dominated by R. togasawariana, which has co‐evolved with the Japanese Douglas‐fir for over 30 million years. More attention must be paid to underground ectomycorrhizal fungi for the conservation of endangered tree species, especially in the era of human‐induced mass extinction.
Resistance to immune-checkpoint blockade remains challenging in patients with non-small cell lung cancer (NSCLC). Tumor-infiltrating leukocyte (TIL) quantity, composition, and activation status profoundly influence responsiveness to cancer immunotherapy. This study examined the immune landscape in the NSCLC tumor microenvironment by analyzing TIL profiles of 281 fresh resected NSCLC tissues. Unsupervised clustering based on numbers and percentages of 30 TIL types classified adenocarcinoma (LUAD) and squamous cell carcinoma (LUSQ) into the cold-, myeloid cell-, and CD8+ T cell-dominant subtypes. These were significantly correlated with patient prognosis; the myeloid cell subtype had worse outcomes than the others. Integrated genomic and transcriptomic analyses, including RNA sequencing, whole-exome sequencing, T cell receptor repertoire, and metabolomics of tumor tissue, revealed that immune reaction-related signaling pathways were inactivated, while the glycolysis and K-ras signaling pathways activated in LUAD and LUSQ myeloid cell-subtypes. Cases with ALK and ROS1 fusion genes were enriched in the LUAD myeloid subtype, and the frequency of TERT copy number variations was higher in LUSQ myeloid subtype than in the others. These classifications of NSCLC based on TIL status may be useful for developing personalized immune therapies for NSCLC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.