Topological semimetals materialize a new state of quantum matter where massless fermions protected by a specific crystal symmetry host exotic quantum phenomena. Distinct from well-known Dirac and Weyl fermions, structurally-chiral topological semimetals are predicted to host new types of massless fermions characterized by a large topological charge, whereas such exotic fermions are yet to be experimentally established. Here, by using angle-resolved photoemission spectroscopy, we experimentally demonstrate that a transition-metal silicide CoSi hosts two types of chiral topological fermions, spin-1 chiral fermion and double Weyl fermion, in the center and corner of the bulk Brillouin zone, respectively. Intriguingly, we found that the bulk Fermi surfaces are purely composed of the energy bands related to these fermions. We also find the surface states connecting the Fermi surfaces associated with these fermions, suggesting the existence of the predicted Fermi-arc surface states. Our result provides the first experimental evidence for the chiral topological fermions beyond Dirac and Weyl fermions in condensed-matter systems, and paves the pathway toward realizing exotic electronic properties associated with unconventional chiral fermions.
Reducing the dimension in materials sometimes leads to unexpected discovery of exotic and/or pronounced physical properties such as quantum Hall effect in graphene and high-temperature superconductivity in iron-chalcogenide atomically thin films. Transition-metal dichalcogenides (TMDs) provide a fertile ground for studying the interplay between dimensionality and electronic properties, since they exhibit a variety of electronic phases like semiconducting, superconducting, and charge-density-wave (CDW) states. Among TMDs, bulk 1T-TiSe2 has been a target of intensive studies due to its unusual CDW properties with the periodic lattice distortions characterized by the three-dimensional (3D) commensurate wave vector. Clarifying the ground states of its two-dimensional (2D) counterpart is of great importance not only to pin down the origin of CDW, but also to find unconventional physical properties characteristic of atomic-layer materials. Here, we show the first experimental evidence for the realization of 2D CDW phase without Fermi-surface nesting in monolayer 1T-TiSe2. Our angle-resolved photoemission spectroscopy (ARPES) signifies an electron pocket at the Brillouin-zone corner above the CDW-transition temperature (TCDW ∼ 200 K), while, below TCDW, an additional electron pocket and replica bands appear at the Brillouin-zone center and corner, respectively, due to the back-folding of bands by the 2 × 2 superstructure potential. Similarity in the spectral signatures to bulk 1T-TiSe2 implies a common driving force of CDW, i.e., exciton condensation, whereas the larger energy gap below TCDW in monolayer 1T-TiSe2 suggests enhancement of electron-hole coupling upon reducing dimensionality. The present result lays the foundation for the electronic-structure engineering based with atomic-layer TMDs.
The emergence of exotic quantum phenomena is often triggered by a subtle change in the crystal phase. Transition metal dichalcogenides (TMDs) exhibit a wide variety of novel properties, depending on their crystal phases, which can be trigonal prismatic (2H) or octahedral (1T). Bulk NbSe 2 crystallizes into the 2H phase, and the charge density wave and the superconductivity emerge simultaneously and interact with each other, thereby creating various anomalous properties. However, these properties and their interplay in another polymorph, 1T-NbSe 2 , have remained unclear because of the difficulty of synthesizing it. Here we report the first experimental realization of a monolayer 1T-NbSe 2 crystal grown epitaxially on bilayer graphene. In contrast with 2H-NbSe 2 , monolayer 1T-NbSe 2 was found to be a Mott insulator, with an energy gap of 0.4 eV. We also found that the insulating 1T and metallic 2H phases can be selectively fabricated by simply controlling the substrate temperature during epitaxy. The present results open a path to crystal-phase engineering based on TMDs.
One of important challenges in condensed-matter physics is to realize new quantum states of matter by manipulating the dimensionality of materials, as represented by the discovery of high-temperature superconductivity in atomic-layer pnictides and room-temperature quantum Hall effect in graphene. Transition-metal dichalcogenides (TMDs) provide a fertile platform for exploring novel quantum phenomena accompanied by the dimensionality change, since they exhibit a variety of electronic/magnetic states owing to quantum confinement. Here we report an anomalous metal-insulator transition induced by 3D-2D crossover in monolayer 1T-VSe2 grown on bilayer graphene. We observed a complete insulating state with a finite energy gap on the entire Fermi surface in monolayer 1T-VSe2 at low temperatures, in sharp contrast to metallic nature of bulk. More surprisingly, monolayer 1T-VSe2 exhibits a pseudogap with Fermi arc at temperatures above the charge-density-wave temperature, showing a close resemblance to high-temperature cuprates. This similarity suggests a common underlying physics between two apparently different systems, pointing to the importance of charge/spin fluctuations to create the novel electronic states, such as pseudogap and Fermi arc, in these materials.
An x-ray absorption fine-structure (XAFS) spectroscopy beamline, BL01B1, was installed at a bending magnet source at SPring-8 and has been open to users since October 1997. It was designed for XAFS experiments covering a wide energy range. Position tables and automatical control programs were established to adjust the x-ray optics and achieve the designed performance of the beamline under each experimental condition. This has enabled conventional XAFS measurements to be made with a good data quality from 4.5 to 110 keV. Keywords: XAFS; high-energy; beamlines.143 radiation light will be reported elsewhere. The results show that the target specifications for the measured beam have almost been completely achieved except for sagittal focusing: a photon flux of 109-10 ~ phs/s with AE/E of <2x 104, a vertical beam size focused by a mirror of < 0.2 mm, and a ratio of the higher harmonics contaminant of < 10 .5 with mirrors.To achieve the designed performance of the beamline in a wide energy range, the beamline optics should be adjusted to the optimal position for each experiment. Because rearranging the monochromator and/or mirrors involves the realignment of many components, such rearranging can be done a few times per day. To achieve quick and easy adjustment, we prepared tables at the positions of the optical components and developed automatic control programs. This report gives an overview of the beamline status and some representative results highlighting the performance of BL01B 1.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.