Kujin contains antiallergic compounds that inhibit upregulation of histamine H1 receptor (H1R) and interleukin (IL)-4 gene expression. However, the underlying mechanism remains unknown. We sought to identify a Kujin-derived antiallergic compound and investigate its mechanism of action. The H1R and IL-4 mRNA levels were determined by real-time quantitative RT-PCR. To investigate the effects of maackiain in vivo, toluene-2,4-diisocyanate (TDI)-sensitized rats were used as a nasal hypersensitivity animal model. We identified (−)-maackiain as the responsible component. Synthetic maackiain showed stereoselectivity for the suppression of IL-4 gene expression but not for H1R gene expression, suggesting distinct target proteins for transcriptional signaling. (−)-Maackiain inhibited of PKCδ translocation to the Golgi and phosphorylation of Tyr311 on PKCδ, which led to the suppression of H1R gene transcription. However, (−)-maackiain did not show any antioxidant activity or inhibition of PKCδ enzymatic activity per se. Pretreatment with maackiain alleviated nasal symptoms and suppressed TDI-induced upregulations of H1R and IL-4 gene expressions in TDI-sensitized rats. These data suggest that (−)-maackiain is a novel antiallergic compound that alleviates nasal symptoms in TDI-sensitized allergy model rats through the inhibition of H1R and IL-4 gene expression. The molecular mechanism underlying its suppressive effect for H1R gene expression is mediated by the inhibition of PKCδ activation.
Background:The molecular mechanism of anti-allergic (Ϫ)-maackiain remains unknown. Results: (Ϫ)-Maackiain and Hsp90 inhibitors inhibited PKC␦ activation and suppressed H1R gene expression. Conclusion: (Ϫ)-Maackiain is a novel Hsp90 pathway inhibitor, and its anti-allergic activity underlies the disruption of Hsp90-PKC␦ interaction. Significance: Hsp90 is involved in H1R gene up-regulation, and its inhibition could be a novel therapeutic strategy for allergic rhinitis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.