Mycosporine-like amino acids (MAAs) are the ultraviolet (UV)-absorbable compounds, which are naturally produced by cyanobacteria and algae. Not only these algae but also marine organisms utilize MAAs to protect their DNA from UV-induced damage. On the other hand, the content of MAAs in algae was changed by the environmental condition and season. In addition to the UV-protected function, the antioxidant capacity of MAAs can apply to the cosmetic sunscreen materials and anti-cancer for human health. In this study, we developed the efficient extraction method of MAAs from red alga dulse in Usujiri (Hokkaido, Japan) and investigated the monthly variation. We also evaluated the antioxidant capacity. We employed the successive extraction method of water and then methanol extraction. Spectrophotometric and HPLC analyses revealed that the yield of MAAs by 6 h water extraction was the highest among the tested conditions, and the content of MAAs in the sample of February was the most (6.930 µmol g−1 dry weight) among the sample from January to May in 2019. Antioxidant capacity of MAAs such as crude MAAs, the purified palythine and porphyra-334 were determined by 2,2’-azinobis(3-ethylbenzothiazoline 6-sulfonic acid) (ABTS) radical scavenging and ferrous reducing power assays in various pH conditions, showing that the highest scavenging activity and reducing power were found at alkaline condition (pH 8.0).
Mycosporine-like amino acids (MAAs) are the natural ultraviolet (UV)-absorbing compounds from micro- and macro-algae. The MAAs in algae change with the environmental conditions and seasons. We previously determined an efficient extraction method of MAAs from red alga dulse in Usujiri (Hokkaido, Japan) and revealed monthly variation of MAA in 2019. Dulse samples in 2019 for MAA preparation were suitable from late February to April. In this study, to confirm the suitable timings to extract MAAs from Usujiri dulse, we also investigated the monthly (from January to May) variation of MAA content in 2020. There were the most MAAs in the sample on 18 March (6.696 µmol g−1 dry weight) among the samples from January to May 2020. From two years of investigation, we deduce that samples of Usujiri dulse from late February to early April were suitable for MAA preparation. The UV stability of the two major purified MAAs in Usujiri dulse—palythine and porphyra-334—was tested. The two MAAs and 2-hydroxy-4-methoxybenzophenone were stable for up to 12 h under a 312 nm lamp at 200 µW cm−2, but 2-ethylhexyl-4-methoxycinnamate formed a cis/trans-mixture in a short time. The data in this study show the suitable sampling period for Usujiri dulse and the possible application for UV protection from food and cosmetics.
We recently demonstrated the monthly variation and antioxidant activity of mycosporine-like amino acids (MAAs) from red alga dulse in Japan. The antioxidant activity of MAAs in acidic conditions was low compared to that in neutral and alkali conditions, but we found strong antioxidant activity from the heated crude MAA fraction in acidic conditions. In this study, we identified and characterized the key compounds involved in the antioxidant activity of this fraction. We first isolated two MAAs, palythine, and porphyra-334, from the fraction and evaluated the activities of the two MAAs when heated. MAAs possess absorption maxima at around 330 nm, while the heated MAAs lost this absorption. The heated MAAs showed a high ABTS radical scavenging activity at pH 5.8–8.0. We then determined the structure of heated palythine via ESI-MS and NMR analyses and speculated about the putative antioxidant mechanism. Finally, a suitable production condition of the heated compounds was determined at 120 °C for 30 min at pH 8.0. We revealed compounds from red algae with antioxidant activities at a wide range of pH values, and this information will be useful for the functional processing of food.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.