We observed single DNA molecules at different ethanol concentrations by using fluorescence microscopy. Large single DNA molecules undergo reentrant conformational transitions from elongated coil into folded globule and then into elongated coil state, accompanied by the increase of the concentration of ethanol in a low‐salt aqueous environment. The second transition from globule into the coil state occurs at around 70 % (v/v) ethanol. From circular dichroism (CD) measurements, it is confirmed that the reentrant transition of the higher order structure proceeds together with the transitions of the secondary structure from B to C and, then, from C to A in a cooperative manner. The determined mechanism of the reentrant transition is discussed in relation to the unique characteristics of solutions with higher ethanol content, for which clathrate‐like nanostructures of alcohol molecules are generated in the surrounding water.
Enzymatic synthesis and the reverse transcription of RNAs containing 2'-O-carbamoyl uridine were evaluated. A mild acidic deprotection procedure allowed the synthesis of 2'-O-carbamoyl uridine triphosphate (UTP). UTP was incorporated correctly into long RNAs, and its fidelity during reverse transcription using SuperScript III was sufficient for RNA aptamer selection.
Fluorescence turn-on detection of adenosine based on microenvironmental and conformational changes of a fluorescent molecular rotor in the DNA triplex is reported.
Recently, we developed a convenient microfluidic droplet generation device based on vacuum‐driven fluid manipulation with a piezoelectric diaphragm micropump. In the present study built on our previous work, we investigate the influence of settings applied to the piezoelectric pump, such as peak‐to‐peak drive voltage (Vp‐p) and wave frequency, on droplet generation characteristics. Stepwise adjustments to the drive voltage in ±10‐Vp‐p increments over the range of 200−250 Vp‐p during droplet creation revealed that the droplet generation rate could be reproducibly controlled at a specific drive voltage. The droplet generation rate switched within <0.5 s after the input of a new voltage. Although the droplet generation rate depended on the drive voltage, this setting had almost no influence on droplet size. The frequency over the selected range (50−60 Hz) did not markedly influence the droplet generation rate or droplet size. We show that the current fluid manipulation system can be conveniently used for both droplet generation and for rapid droplet reading, which is required in many microfluidic‐based applications.
Enzymatic amino acid assays are important in physiological research and clinical diagnostics because abnormal amino acid concentrations in biofluids are associated with various diseases. L-histidine decarboxylase from Photobacterium phosphoreum (PpHDC) is a pyridoxal 5′-phosphate-dependent enzyme and a candidate for use in an L-histidine quantitation assay. Previous cysteine substitution experiments demonstrated that the PpHDC C57S mutant displayed improved long-term storage stability and thermostability when compared with those of the wild-type enzyme. In this study, combinational mutation experiments of single cysteine substitution mutants of PpHDC were performed, revealing that the PpHDC C57S/C101V/C282V mutant possessed the highest thermostability. The stabilizing mechanism of these mutations were elucidated by solving the structures of PpHDC C57S and C57S/C101V/C282V mutants by X-ray crystallography. In the crystal structures, two symmetry-related PpHDC molecules form a domain-swapped homodimer. The side chain of S57 is solvent exposed in the structure, indicating that the C57S mutation eliminates chemical oxidation or disulfide bond formation with a free thiol group, thereby providing greater stability. Residues 101 and 282 form hydrophobic interactions with neighboring hydrophobic residues. Mutations C101V and C282V enhanced thermostability of PpHDC by filling a cavity present in the hydrophobic core (C101V) and increasing hydrophobic interactions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.