The past 20 years have resulted in unprecedented progress in understanding brain energy metabolism and its role in health and disease. In this review, which was initiated at the 14th International Society for Neurochemistry Advanced School, we address the basic concepts of brain energy metabolism and approach the question of why the brain has high energy expenditure. Our review illustrates that the vertebrate brain has a high need for energy because of the high number of neurons and the need to maintain a delicate interplay between energy metabolism, neurotransmission, and plasticity. Disturbances to the energetic balance, to mitochondria quality control or to glia–neuron metabolic interaction may lead to brain circuit malfunction or even severe disorders of the CNS. We cover neuronal energy consumption in neural transmission and basic (‘housekeeping’) cellular processes. Additionally, we describe the most common (glucose) and alternative sources of energy namely glutamate, lactate, ketone bodies, and medium chain fatty acids. We discuss the multifaceted role of non‐neuronal cells in the transport of energy substrates from circulation (pericytes and astrocytes) and in the supply (astrocytes and microglia) and usage of different energy fuels. Finally, we address pathological consequences of disrupted energy homeostasis in the CNS.
Axon initial segments (AISs) initiate action potentials and regulate the trafficking of vesicles between somatodendritic and axonal compartments. However, the mechanisms controlling AIS assembly remain poorly defined. We performed differential proteomics and found nuclear mitotic apparatus protein 1 (NuMA1) is downregulated in AIS-deficient neonatal mouse brains and neurons. NuMA1 is transiently located at the AIS during development where it interacts with the scaffolding protein 4.1B and the dynein regulator lissencephaly 1 (Lis1). Silencing NuMA1 or protein 4.1B by shRNA disrupts AIS assembly, but not maintenance. Silencing Lis1 or overexpressing NuMA1 during AIS assembly increased the density of AIS proteins, including ankyrinG and neurofascin-186 (NF186). NuMA1 inhibits the endocytosis of AIS NF186 by impeding Lis1’s interaction with doublecortin, a potent facilitator of NF186 endocytosis. Our results indicate the transient expression and AIS localization of NuMA1 stabilizes the developing AIS by inhibiting endocytosis and removal of AIS proteins.
Neuronal Elav-like (nElavl or neuronal Hu) proteins are RNA-binding proteins that regulate RNA stability and alternative splicing, which are associated with axonal and synaptic structures. nElavl proteins promote the differentiation and maturation of neurons via their regulation of RNA. The functions of nElavl in mature neurons are not fully understood, although Elavl3 is highly expressed in the adult brain. Furthermore, possible associations between nElavl genes and several neurodegenerative diseases have been reported. We investigated the relationship between nElavl functions and neuronal degeneration using Elavl3−/− mice. Elavl3−/− mice exhibited slowly progressive motor deficits leading to severe cerebellar ataxia, and axons of Elavl3−/− Purkinje cells were swollen (spheroid formation), followed by the disruption of synaptic formation of axonal terminals. Deficit in axonal transport and abnormalities in neuronal polarity was observed in Elavl3−/− Purkinje cells. These results suggest that nElavl proteins are crucial for the maintenance of axonal homeostasis in mature neurons. Moreover, Elavl3−/− mice are unique animal models that constantly develop slowly progressive axonal degeneration. Therefore, studies of Elavl3−/− mice will provide new insight regarding axonal degenerative processes.
Mutations in the MATR3 gene have been identified as a cause of familial amyotrophic lateral sclerosis, but involvement of the matrin 3 (MATR3) protein in sporadic amyotrophic lateral sclerosis (SALS) pathology has not been fully assessed. We immunohistochemically analyzed MATR3 pathology in the spinal cords of SALS and control autopsy specimens. MATR3 immunostaining of the motor neuron nuclei revealed two distinct patterns: mild and strong staining. There were no differences in the ratio of mild versus strong nuclear staining between the SALS and control cases. MATR3-containing neuronal cytoplasmic inclusions (NCIs) were observed in 60% of SALS cases. Most motor neurons with MATR3-positive NCIs exhibited a mild nuclear staining pattern. Although 16.8% of NCIs positive for transactivating response region DNA-binding protein 43 (TDP-43) were estimated as double-labeled by MATR3, no MATR3-positive or TDP-43-negative NCIs were observed. Although a previous study found that MATR3-positive NCIs are present only in cases with C9orf72 hexanucleotide repeat expansion, ubiquitin-positive granular NCIs were not observed in the cerebellum, which have been reported as specific to C9orf72-related ALS. Six ALS cases were confirmed to be negative for the GGGGCC hexanucleotide. Our results reveal that MATR3 is a component of TDP-43-positive NCIs in motor neurons, even in SALS, and indicate the broader involvement of MATR3 in ALS pathology and the heterogeneity of TDP-43-positive NCIs.
BackgroundThe event-related desynchronization (ERD) in EEG is known to appear during motor imagery, and is thought to reflect cortical processing for motor preparation. The aim of this study is to examine the modulation of ERD with motor impairment in ALS patients. ERD during hand motor imagery was obtained from 8 ALS patients with a variety of motor impairments. ERD was also obtained from age-matched 11 healthy control subjects with the same motor task. The magnitude and frequency of ERD were compared between groups for characterization of ALS specific changes.ResultsThe ERD of ALS patients were significantly smaller than those of control subjects. Bulbar function and ERD were negatively correlated in ALS patients. Motor function of the upper extremities did was uncorrelated with ERD.ConclusionsALS patients with worsened bulbar scales may show smaller ERD. Motor function of the upper extremities did was uncorrelated with ERD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.