Single-molecule magnets: A cyanide-bridged hexanuclear complex showed a thermal electron-transfer-coupled spin transition centered at 220 K. Light irradiation at low temperature (LT; HT = high temperature) generated a metastable state showing slow magnetic relaxation in measurements of the alternating-current magnetic susceptibility (χ(m); see picture).
Synthetic hexaploid wheat is an effective genetic resource for transferring agronomically important genes from Aegilops tauschii to common wheat. Wide variation in grain size and shape, one of the main targets for wheat breeding, has been observed among Ae. tauschii accessions. To identify the quantitative trait loci (QTLs) responsible for grain size and shape variation in the wheat D genome under a hexaploid genetic background, six parameters related to grain size and shape were measured using SmartGrain digital image software and QTL analysis was conducted using four F2 mapping populations of wheat synthetic hexaploids. In total, 18 QTLs for the six parameters were found on five of the seven D-genome chromosomes. The identified QTLs significantly contributed to the variation in grain size and shape among the synthetic wheat lines, implying that the D-genome QTLs might be at least partly functional in hexaploid wheat. Thus, synthetic wheat lines with diverse D genomes from Ae. tauschii are useful resources for the identification of agronomically important loci that function in hexaploid wheat.
Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene are the most common cause of familial Parkinson's disease (PD). Impaired mitochondrial function is suspected to play a major role in PD. Nonetheless, the underlying mechanism by which impaired LRRK2 activity contributes to PD pathology remains unclear. Here, we identified the role of LRRK2 in endoplasmic reticulum (ER)mitochondrial tethering, which is essential for mitochondrial bioenergetics. LRRK2 regulated the activities of E3 ubiquitin ligases MARCH5, MULAN, and Parkin via kinase-dependent protein-protein interactions. Kinase-active LRRK2(G2019S) dissociated from these ligases, leading to their PERK-mediated phosphorylation and activation, thereby increasing ubiquitin-mediated degradation of ER-mitochondrial tethering proteins. By contrast, kinase-dead LRRK2(D1994A)-bound ligases blocked PERK-mediated phosphorylation and activation of E3 ligases, thereby increasing the levels of ER-mitochondrial tethering proteins. Thus, the role of LRRK2 in the ER-mitochondrial interaction represents an important control point for cell fate and pathogenesis in PD.
Grain shape and size are involved in the main components of the domestication syndrome in cereals. Wheat grain shape has been dramatically altered at each stage of the domestication of tetraploid wheat and through common wheat speciation. To elucidate the evolutionary change of wheat grain shape, principal component (PC) analysis of grain shape-related traits was first conducted using wild and cultivated tetraploid, synthetic hexaploid, and common wheat accessions. The synthetic hexaploid wheat lines were previously produced through interspecific crosses between two common wheat progenitors, tetraploid wheat and Aegilops tauschii, and produced grains similar to those of cultivated tetraploid wheat. To identify genetic loci related to the difference in grain shape between common wheat and the synthetic wheat, the 15 traits related to grain and spikelet shape were measured in 108 F 2 individuals between Norin 61 and a synthetic wheat line, and the first three PC values for the 15 traits, PC1, PC2 and PC3, were mapped as quantitative traits in the F 2 population. In total, six QTLs, found on chromosomes 1A, 5A, 1D, 2D and 7D, showed significant LOD scores. Among them, a QTL for PC2, located on the 2DS chromosomal region near the Ppd-D1 locus, mainly contributed to the phenotypic difference in grain shape. Tg-D1, controlling tenacious glume phenotype, was located at a similar region to the 2DS QTL, which suggested that the Tg-D1 locus pleiotropically affects not only glume toughness but also spikelet and grain shape in hexaploid wheat. Therefore, it was predicted that wheat grains were rapidly improved toward a shorter and rounder phenotype accompanied with free-threshing wheat formation.
Adoptive cellular therapy and its derivative, chimeric AgR T cell therapy, have achieved significant progress against cancer. Major barriers persist, however, including insufficient induction of cytotoxic T cells and exhaustion of tumor-infiltrating lymphocytes. In this study, we discovered a new role for 2-deoxy-d-glucose (2DG) in enhancing the antitumor activity of human T cells against NKG2D ligand-expressing tumor cells. Human T cells treated with 2DG upregulated the NK-specific transcription factors TOX2 and EOMES, thereby acquiring NK cell properties, including high levels of perforin/granzyme and increased sensitivity to IL-2. Notably, rather than inhibiting glycolysis, 2DG modified N-glycosylation, which augmented antitumor activity and cell surface retention of IL-2R of T cells. Moreover, 2DG treatment prevented T cells from binding to galectin-3, a potent tumor Ag associated with T cell anergy. Our results, therefore, suggest that modifying N-glycosylation of T cells with 2DG could improve the efficacy of T cell–based immunotherapies against cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.