SUMMARYThioredoxins (Trxs) regulate the activity of various chloroplastic proteins in a light-dependent manner. Five types of Trxs function in different physiological processes in the chloroplast of Arabidopsis thaliana. Previous in vitro experiments have suggested that the f-type Trx (Trx f) is the main redox regulator of chloroplast enzymes, including Calvin cycle enzymes. To investigate the in vivo contribution of each Trx isoform to the redox regulatory system, we first quantified the protein concentration of each Trx isoform in the chloroplast stroma. The m-type Trx (Trx m), which consists of four isoforms, was the most abundant type. Next, we analyzed several Arabidopsis Trx-m-deficient mutants to elucidate the physiological role of Trx m in vivo. Deficiency of Trx m impaired plant growth and decreased the CO 2 assimilation rate. We also determined the redox state of Trx target enzymes to examine their photo-reduction, which is essential for enzyme activation. In the Trx-m-deficient mutants, the reduction level of fructose-1,6-bisphosphatase and sedoheptulose-1,7-bisphosphatase was lower than that in the wild type. Inconsistently with the historical view, our in vivo study suggested that Trx m plays a more important role than Trx f in the activation of Calvin cycle enzymes.
SUMMARYIn addition to linear electron transport from water to NADP + , alternative electron transport pathways are believed to regulate photosynthesis. In the two routes of photosystem I (PSI) cyclic electron transport, electrons are recycled from the stromal reducing pool to plastoquinone (PQ), generating additional DpH (proton gradient across thylakoid membranes). Plastid terminal oxidase (PTOX) accepts electrons from PQ and transfers them to oxygen to produce water. Although both electron transport pathways share the PQ pool, it is unclear whether they interact in vivo. To investigate the physiological link between PSI cyclic electron transport-dependent PQ reduction and PTOX-dependent PQ oxidation, we characterized mutants defective in both functions. Impairment of PSI cyclic electron transport suppressed leaf variegation in the Arabidopsis immutans (im) mutant, which is defective in PTOX. The im variegation was more effectively suppressed in the pgr5 mutant, which is defective in the main pathway of PSI cyclic electron transport, than in the crr2-2 mutant, which is defective in the minor pathway. In contrast to this chloroplast development phenotype, the im defect alleviated the growth phenotype of the crr2-2 pgr5 double mutant. This was accompanied by partial suppression of stromal over-reduction and restricted linear electron transport. We discuss the function of the alternative electron transport pathways in both chloroplast development and photosynthesis in mature leaves.
PSI cyclic electron transport is essential for photosynthesis and photoprotection. In higher plants, the antimycin A-sensitive pathway is the main route of electrons in PSI cyclic electron transport. Although a small thylakoid protein, PGR5 (PROTON GRADIENT REGULATION 5), is essential for this pathway, its function is still unclear, and there are numerous debates on the rate of electron transport in vivo and its regulation. To assess how PGR5-dependent PSI cyclic electron transport is regulated in vivo, we characterized its activity in ruptured chloroplasts isolated from Arabidopsis thaliana. The activity of ferredoxin (Fd)-dependent plastoquinone (PQ) reduction in the dark is impaired in the pgr5 mutant. Alkalinization of the reaction medium enhanced the activity of Fd-dependent PQ reduction in the wild type. Even weak actinic light (AL) illumination also markedly activated PGR5-dependent PSI cyclic electron transport in ruptured chloroplasts. Even in the presence of linear electron transport [11 mumol O2 (mg Chl)(-1) h(-1)], PGR5-dependent PSI electron transport was detected as a difference in Chl fluorescence levels in ruptured chloroplasts. In the wild type, PGR5-dependent PSI cyclic electron transport competed with NADP+ photoreduction. These results suggest that the rate of PGR5-dependent PSI cyclic electron transport is high enough to balance the production ratio of ATP and NADPH during steady-state photosynthesis, consistently with the pgr5 mutant phenotype. Our results also suggest that the activity of PGR5-dependent PSI cyclic electron transport is regulated by the redox state of the NADPH pool.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.