Causal Dynamical Triangulations (CDT) is a lattice theory where aspects of quantum gravity can be studied. Two-dimensional CDT can be solved analytically and the continuum (quantum) Hamiltonian obtained. In this article we show that this continuum Hamiltonian is the one obtained by quantizing twodimensional projectable Hořava-Lifshitz gravity. 1 arXiv:1302.6359v1 [hep-th]
We introduce a statistical system on random networks of trivalent vertices for the purpose of studying the canonical tensor model, which is a rank-three tensor model in the canonical formalism. The partition function of the statistical system has a concise expression in terms of integrals, and has the same symmetries as the kinematical ones of the canonical tensor model. We consider the simplest nontrivial case of the statistical system corresponding to the Ising model on random networks, and find that its phase diagram agrees with what is implied by regrading the Hamiltonian vector field of the canonical tensor model with N = 2 as a renormalization group flow. Along the way, we obtain an explicit exact expression of the free energy of the Ising model on random networks in the thermodynamic limit by the Laplace method. This paper provides a new example connecting a model of quantum gravity and a random statistical system. * sasakura@yukawa.kyoto-u.ac.jp † Yuki.Sato@wits.ac.za * Namely, the indices can take N values, say 1, 2, . . . , N .
Tensor models, generalization of matrix models, are studied aiming for quantum gravity in dimensions larger than two. Among them, the canonical tensor model is formulated as a totally constrained system with first-class constraints, the algebra of which resembles the Dirac algebra of general relativity. When quantized, the physical states are defined to be vanished by the quantized constraints. In explicit representations, the constraint equations are a set of partial differential equations for the physical wave-functions, which do not seem straightforward to be solved due to their non-linear character. In this paper, after providing some explicit solutions for N = 2, 3, we show that certain scale-free integration of partition functions of statistical systems on random networks (or random tensor networks more generally) provides a series of solutions for general N . Then, by generalizing this form, we also obtain various solutions for general N . Moreover, we show that the solutions for the cases with a cosmological constant can be obtained from those with no cosmological constant for increased N . This would imply the interesting possibility that a cosmological constant can always be absorbed into the dynamics and is not an input parameter in the canonical tensor model. We also observe the possibility of symmetry enhancement in N = 3, and comment on an extension of Airy function related to the solutions.
The canonical tensor model (CTM) is a rank-three tensor model formulated as a totally constrained system in the canonical formalism. The constraint algebra of CTM has a similar structure as that of the ADM formalism of general relativity, and is studied as a discretized model for quantum gravity. In this paper, we analyze the classical equation of motion (EOM) of CTM in a formal continuum limit through a derivative expansion of the tensor of CTM up to the fourth order, and show that it is the same as the EOM of a coupled system of gravity and a scalar field derived from the Hamilton-Jacobi equation with an appropriate choice of an action. The action contains a scalar field potential of an exponential form, and the system classically respects a dilatational symmetry. We find that the system has a critical dimension, given by six, over which it becomes unstable due to the wrong sign of the scalar kinetic term. In six dimensions, de Sitter spacetime becomes a solution to the EOM, signaling the emergence of a conformal symmetry, while the time evolution of the scale factor is power-law in dimensions below six.
Canonical tensor model is a theory of dynamical fuzzy spaces in arbitrary space-time dimensions. Examining its simplest case, we find a connection to a minisuperspace model of general relativity in arbitrary dimensions. This is a first step in interpreting variables in canonical tensor model based on the known language of general relativity.Comment: 9 page
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.