The coronavirus disease
2019 (COVID-19) pandemic, caused by severe
acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has resulted
in millions of deaths and threatens public health and safety. Despite
the rapid global spread of COVID-19 vaccines, effective oral antiviral
drugs are urgently needed. Here, we describe the discovery of S-217622, the first oral noncovalent, nonpeptidic SARS-CoV-2
3CL protease inhibitor clinical candidate. S-217622 was
discovered via virtual screening followed by biological screening
of an in-house compound library, and optimization of the hit compound
using a structure-based drug design strategy. S-217622 exhibited antiviral activity in vitro against current
outbreaking SARS-CoV-2 variants and showed favorable pharmacokinetic
profiles in vivo for once-daily oral dosing. Furthermore, S-217622 dose-dependently inhibited intrapulmonary replication
of SARS-CoV-2 in mice, indicating that this novel noncovalent inhibitor
could be a potential oral agent for treating COVID-19.
Good for winter: The structure–activity relationships of antifreeze glycoproteins (AFGPs) have been characterized by chemical synthesis and conformational analysis. The results revealed that the mode of glycosylation on the threonyl residue in the tripeptide unit is of primary importance in the formation of the specific structure for the antifreeze activity (see picture for the structural requirements of AFGPs).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.