Covalent intermolecular cross-linking provides collagen fibrils with stability. The cross-linking chemistry is tissue-specific and determined primarily by the state of lysine hydroxylation at specific sites. A recent study on cyclophilin B (CypB) null mice, a model of recessive osteogenesis imperfecta, demonstrated that lysine hydroxylation at the helical cross-linking site of bone type I collagen was diminished in these animals (Cabral, W. A., Perdivara, I., Weis, M., Terajima, M., Blissett, A. R., Chang, W., Perosky, J. E., Makareeva, E. N., Mertz, E. L., Leikin, S., Tomer, K. B., Kozloff, K. M., Eyre, D. R., Yamauchi, M., and Marini, J. C. (2014) PLoS Genet. 10, e1004465). However, the extent of decrease appears to be tissue-and molecular site-specific, the mechanism of which is unknown. Here we report that although CypB deficiency resulted in lower lysine hydroxylation in the helical cross-linking sites, it was increased in the telopeptide cross-linking sites in tendon type I collagen. This resulted in a decrease in the lysine aldehyde-derived cross-links but generation of hydroxylysine aldehyde-derived cross-links. The latter were absent from the wild type and heterozygous mice. Glycosylation of hydroxylysine residues was moderately increased in the CypB null tendon. We found that CypB interacted with all lysyl hydroxylase isoforms (isoforms 1-3) and a putative lysyl hydroxylase-2 chaperone, 65-kDa FK506-binding protein. Tendon collagen in CypB null mice showed severe size and organizational abnormalities. The data indicate that CypB modulates collagen cross-linking by differentially affecting lysine hydroxylation in a site-specific manner, possibly via its interaction with lysyl hydroxylases and associated molecules. This study underscores the critical importance of collagen post-translational modifications in connective tissue formation.Collagens comprise a large family of structurally related extracellular matrix proteins (1). Among all of the genetic types of collagen identified, fibrillar type I collagen is the most abundant, providing tissues and organs with form and stability. It is a heterotrimeric molecule composed of two ␣1 chains and one ␣2 chain forming a long uninterrupted triple helix with short non-helical domains (telopeptide) at both N and C termini. One of the functionally important characteristics of collagen is its unique, sequential post-translational modifications of Lys residues. The modifications include hydroxylation and monoand diglycosylation of hydroxylysine (Hyl), 3 and oxidative deamination of Lys and Hyl in the N-and C-telopeptides followed by extensive covalent intermolecular cross-linking (2). It is now clear that defective Lys modifications of collagen cause and/or are associated with a broad range of connective tissue disorders, including Ehlers-Danlos syndrome type VIA (3), bronchopulmonary dysplasia (4), Kuskokwim syndrome (5), Bruck syndrome (6, 7), fibrosis (8), disuse osteoporosis (9), and cancer progression (10, 11). Our recent finding showed that a switch of collage...
Recent studies have reported that oral intake of gelatin hydrolysate has various beneficial effects, such as reduction of joint pain and lowering of blood sugar levels. In this study, we produced a novel gelatin hydrolysate using a cysteine-type ginger protease having unique substrate specificity with preferential peptide cleavage with Pro at the P2 position. Substantial amounts of X-hydroxyproline (Hyp)-Gly-type tripeptides were generated up to 2.5% (w/w) concomitantly with Gly-Pro-Y-type tripeptides (5%; w/w) using ginger powder. The in vivo absorption of the ginger-degraded gelatin hydrolysate was estimated using mice. The plasma levels of collagen-derived oligopeptides, especially X-Hyp-Gly, were significantly high (e.g., 2.3-fold for Glu-Hyp-Gly, p < 0.05) compared with those of the control gelatin hydrolysate, which was prepared using gastrointestinal proteases and did not contain detectable X-Hyp-Gly. This study demonstrated that orally administered X-Hyp-Gly was effectively absorbed into the blood, probably due to the high protease resistance of this type of tripeptide.
Collagens are the most abundant proteins in animals and are involved in many physiological/pathological events. Although various methods have been used to quantify collagen and its post-translational modifications (PTMs) over the years, it is still difficult to accurately quantify type-specific collagen and minor collagen PTMs. We report a novel quantitative method targeting collagen using stable isotope-labeled collagen named "SI-collagen", which was labeled with isotopically heavy lysine, arginine, and proline in fibroblasts culture. We prepared highly labeled and purified SI-collagen for use as an internal standard in mass spectrometric analysis, particularly for a new approach using amino acid hydrolysis. Our method enabled accurate collagen analyses, including quantification of (1) type-specific collagen (types I and III in this paper), (2) total collagen, and (3) collagen PTMs by LC-MS with high sensitivity. SI-collagen is also applicable to other diverse analyses of collagen and can be a powerful tool for various studies, such as detailed investigation of collagen-related disorders.
Collagen-derived hydroxyproline (Hyp)-containing dipeptides and tripeptides, which are known to possess physiological functions, appear in blood at high concentrations after oral ingestion of gelatin hydrolysate. However, highly accurate and sensitive quantification of the Hyp-containing peptides in blood has been challenging because of the analytical interference from numerous other blood components. We recently developed a stable isotope-labeled collagen named "SI-collagen" that can be used as an internal standard in various types of collagen analyses employing liquid chromatography-mass spectrometry (LC-MS). Here we prepared stable isotope-labeled Hyp-containing peptides from SI-collagen using trypsin/chymotrypsin and plasma proteases by mimicking the protein degradation pathways in the body. With the protease digest of SI-collagen used as an internal standard mixture, we achieved highly accurate simultaneous quantification of Hyp and 13 Hyp-containing peptides in human blood by LC-MS. The area under the plasma concentration-time curve of Hyp-containing peptides ranged from 0.663 ± 0.022 nmol/mL·h for Pro-Hyp-Gly to 163 ± 1 nmol/mL·h for Pro-Hyp after oral ingestion of 25 g of fish gelatin hydrolysate, and the coefficient of variation of three separate measurements was <7% for each peptide except for Glu-Hyp-Gly, which was near the detection limit. Our method is useful for absorption/metabolism studies of the Hyp-containing peptides and development of functionally characterized gelatin hydrolysate.
A coiled-coil microtubule-bundling protein, p180, was originally reported as a ribosome-binding protein on the rough endoplasmic reticulum (ER) and is highly expressed in secretory tissues. Recently, we reported a novel role for p180 in the transGolgi network (TGN) expansion following stimulated collagen secretion. Here, we show that p180 plays a key role in procollagen biosynthesis and secretion in diploid fibroblasts. Depletion of p180 caused marked reductions of secreted collagens without significant loss of the ER membrane or mRNA. Metabolic labeling experiments revealed that the procollagen biosynthetic activity was markedly affected following p180 depletion. Moreover, loss of p180 perturbs ascorbate-stimulated de novo biosynthesis mainly in the membrane fraction with a preferential secretion defect of large proteins. At the EM level, one of the most prominent morphological features of p180-depleted cells was insufficient ribosome association on the ER membranes. In contrast, the ER of control cells was studded with numerous ribosomes, which were further enhanced by ascorbate. Similarly biochemical analysis confirmed that levels of membrane-bound ribosomes were altered in a p180-dependent manner. Taken together, our data suggest that p180 plays crucial roles in enhancing collagen biosynthesis at the entry site of the secretory compartments by a novel mechanism that mainly involves facilitating ribosome association on the ER. Entry of proteins into the secretory pathway via the rough endoplasmic reticulum (ER)3 is essential for intracellular transport of proteins to secretory compartments within the cell and finally to the extracellular milieu. In tissues with high secretory activity, such as the pancreas, the secretory apparatus is highly developed. One of the morphological hallmarks in such tissues is drastic proliferation of rough ER membranes that are densely occupied by ribosomes, whereas the rough ER in other tissues forms a loose network of tubular cisternae sparsely studded with ribosomes (1). However, the molecular basis for the biogenesis and proliferation of the rough ER in secretory tissues is largely unknown (1, 2).Collagen is one of the major components of the extracellular matrix (ECM) in connective tissues such as skin, tendon, and bone. It is synthesized on the ER membrane as a precursor form, i.e. procollagen, and secreted by professional secretory cells including fibroblasts. Fully consistent with the normal secretory pathway, procollagen is cotranslationally translocated into the lumen of the ER. Much interest has been focused on the mechanisms of its folding and trimerization processes in the ER, such as the hydroxylation enzymes for proline and lysine residues (reviewed in Refs. 3 and 4)). Recently, there has been considerable interest in the intracellular trafficking mechanism of procollagen as a representative model for supramolecular cargos (5-7). In addition, the regulation of procollagen biosynthesis has been intensively studied at the transcriptional level (8, 9) as well as at the...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.