Purpose Although some studies have reported differences in clinicopathological features between left- and right-sided advanced colorectal cancer (CRC), there are few reports regarding early-stage disease. In this study, we aimed to compare the clinicopathological features of left- and right-sided T1 CRC. Methods Subjects were 1142 cases with T1 CRC undergoing surgical or endoscopic resection between 2001 and 2018 at Showa University Northern Yokohama Hospital. Of these, 776 cases were left-sided (descending colon to rectum) and 366 cases were right-sided (cecum to transverse colon). We compared clinical (patients age, sex, tumor size, morphology, initial treatment) and pathological features (invasion depth, histological grade, lymphatic invasion, vascular invasion, tumor budding) including lymph node metastasis (LNM). Results Left-sided T1 CRC showed significantly higher rates of LNM (left-sided 12.0% vs. right-sided 5.4%, P < 0.05) and lymphatic invasion (left-sided 32.7% vs. right-sided 23.2%, P < 0.05). Especially, the sigmoid colon and rectum showed higher rates of LNM (12.4% and 12.1%, respectively) than other locations. Patients with left-sided T1 CRC were younger than those with right-sided T1 CRC (64.9 years ±11.5 years vs. 68.7 ± 11.6 years, P < 0.05), as well as significantly lower rates of poorly differentiated carcinoma/mucinous carcinoma than right-sided T1 CRC (11.6% vs. 16.1%, P < 0.05). Conclusion Left-sided T1 CRC, especially in the sigmoid colon and rectum, exhibited higher rates of LNM than right-sided T1 CRC, followed by higher rates of lymphatic invasion. These results suggest that tumor location should be considered in decisions regarding additional surgery after endoscopic resection. Trial registration This study was registered with the University Hospital Medical Network Clinical Trials Registry (UMIN 000032733).
With the prevalence of endoscopic submucosal dissection and endoscopic full thickness resection, which enable complete resection of T1 colorectal cancer with a negative margin, the treatment strategy following endoscopic resection has become more important. The necessity of secondary surgical resection is determined on the basis of the risk of lymph node metastasis according to the histopathological findings of resected specimens because ~10% of T1 colorectal cancer cases have lymph node metastasis. The current Japanese treatment guidelines state four risk factors for lymph node metastasis: lymphovascular invasion, histological differentiation, depth of submucosal invasion, and tumor budding. These guidelines have succeeded in stratifying the low‐risk group for lymph node metastasis, in which endoscopic resection alone is acceptable for cure. On the other hand, there are some problems: there is variation in diagnosis methods and low interobserver agreement for each pathological factor and 90% of surgical resections are unnecessary, with lymph node metastasis negativity. To ensure patients with T1 colorectal cancer receive more appropriate treatment, these problems should be addressed. In this systematic review, we gave some suggestions to these practical issues of four pathological factors as predictors.
Objectives Complete endoscopic healing, defined as Mayo endoscopic score (MES) = 0, is an optimal target in the treatment of ulcerative colitis (UC). However, some patients with MES = 0 show clinical relapse within 12 months. Histologic goblet mucin depletion has emerged as a predictor of clinical relapse in patients with MES = 0. We observed goblet depletion in vivo using an endocytoscope, and analyzed the association between goblet appearance and future prognosis in UC patients. Methods In this retrospective cohort study, all enrolled UC patients had MES = 0 and confirmed clinical remission between October 2016 and March 2020. We classified the patients into two groups according to the goblet appearance status: preserved‐goblet and depleted‐goblet groups. We followed the patients until March 2021 and evaluated the difference in cumulative clinical relapse rates between the two groups. Results We identified 125 patients with MES = 0 as the study subjects. Five patients were subsequently excluded. Thus, we analyzed the data for 120 patients, of whom 39 were classified as the preserved‐goblet group and 81 as the depleted‐goblet group. The patients were followed‐up for a median of 549 days. During follow‐up, the depleted‐goblet group had a significantly higher cumulative clinical relapse rate than the preserved‐goblet group (19% [15/81] vs. 5% [2/39], respectively; P = 0.02). Conclusions Observing goblet appearance in vivo allowed us to better predict the future prognosis of UC patients with MES = 0. This approach may assist clinicians with onsite decision‐making regarding treatment interventions without a biopsy.
ObjectivesLymph node metastasis (LNM) prediction for T1 colorectal cancer (CRC) is critical for determining the need for surgery after endoscopic resection because LNM occurs in 10%. We aimed to develop a novel artificial intelligence (AI) system using whole slide images (WSIs) to predict LNM.MethodsWe conducted a retrospective single center study. To train and test the AI model, we included LNM status‐confirmed T1 and T2 CRC between April 2001 and October 2021. These lesions were divided into two cohorts: training (T1 and T2) and testing (T1). WSIs were cropped into small patches and clustered by unsupervised K‐means. The percentage of patches belonging to each cluster was calculated from each WSI. Each cluster's percentage, sex, and tumor location were extracted and learned using the random forest algorithm. We calculated the areas under the receiver operating characteristic curves (AUCs) to identify the LNM and the rate of over‐surgery of the AI model and the guidelines.ResultsThe training cohort contained 217 T1 and 268 T2 CRCs, while 100 T1 cases (LNM‐positivity 15%) were the test cohort. The AUC of the AI system for the test cohort was 0.74 (95% confidence interval [CI] 0.58–0.86), and 0.52 (95% CI 0.50–0.55) using the guidelines criteria (P = 0.0028). This AI model could reduce the 21% of over‐surgery compared to the guidelines.ConclusionWe developed a pathologist‐independent predictive model for LNM in T1 CRC using WSI for determination of the need for surgery after endoscopic resection.Trial registrationUMIN Clinical Trials Registry (UMIN000046992, https://center6.umin.ac.jp/cgi-open-bin/ctr/ctr_view.cgi?recptno=R000053590).
Objectives: Advances in endoscopic technology, including magnifying and image-enhanced techniques, have been attracting increasing attention for the optical characterization of colorectal lesions. These techniques are being implemented into clinical practice as cost-effective and real-time approaches. Additionally, with the recent progress in endoscopic interventions, endoscopic resection is gaining acceptance as a treatment option in patients with ulcerative colitis (UC). Therefore, accurate preoperative characterization of lesions is now required. However, lesion characterization in patients with UC may be difficult because UC is often affected by inflammation, and it may be characterized by a distinct "bottom-up" growth pattern, and even expert endoscopists have relatively little experience with such cases. In this systematic review, we assessed the current status and limitations of the use of optical characterization of lesions in patients with UC.Methods: A literature search of online databases (MEDLINE via PubMed and CENTRAL via the Cochrane Library) was performed from 1 January 2000 to 30 November 2021. Results:The database search initially identified 748 unique articles. Finally, 25 studies were included in the systematic review: 23 focused on differentiation of neoplasia from nonneoplasia, one focused on differentiation of UC-associated neoplasia from sporadic neoplasia, and one focused on differentiation of low-grade dysplasia from high-grade dysplasia and cancer.Conclusions: Optical characterization of neoplasia in patients with UC, even using advanced endoscopic technology, is still challenging and several issues remain to be addressed. We believe that the information revealed in this review will encourage researchers to commit to the improvement of optical diagnostics for UC-associated lesions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.