Edited by Amanda J. Fosang Hyaluronan (HA) is an extremely large polysaccharide (glycosaminoglycan) involved in many cellular functions. HA catabolism is thought to involve the initial cleavage of extracellular high-molecular-weight (HMW) HA into intermediate-size HA by an extracellular or cell-surface hyaluronidase, internalization of intermediate-size HA, and complete degradation into monosaccharides in lysosomes. Despite considerable research, the identity of the hyaluronidase responsible for the initial HA cleavage in the extracellular space remains elusive. HYAL1 and HYAL2 have properties more consistent with lysosomal hyaluronidases, whereas CEMIP/KIAA1199, a recently identified HA-binding molecule that has HA-degrading activity, requires the participation of the clathrincoated pit pathway of live cells for HA degradation. Here we show that transmembrane protein 2 (TMEM2), a mammalian homolog of a protein playing a role in zebrafish endocardial cushion development, is a cell-surface hyaluronidase. Live immunostaining and surface biotinylation assays confirmed that mouse TMEM2 is expressed on the cell surface in a type II transmembrane topology. TMEM2 degraded HMW-HA into ϳ5-kDa fragments but did not cleave chondroitin sulfate or dermatan sulfate, indicating its specificity to HA. The hyaluronidase activity of TMEM2 was Ca 2؉ -dependent; the enzyme's pH optimum is around 6 -7, and unlike CEMIP/ KIAA1199, TMEM2 does not require the participation of live cells for its hyaluronidase activity. Moreover, TMEM2-expressing cells could eliminate HA immobilized on a glass surface in a contact-dependent manner. Together, these data suggest that TMEM2 is the long-sought-after hyaluronidase that cleaves extracellular HMW-HA into intermediate-size fragments before internalization and degradation in the lysosome.Hyaluronic acid (HA) 2 is a glycosaminoglycan composed of repeating disaccharide units of glucuronic acid and N-acetylglucosamine. It is a linear polymer of extremely large molecular mass, often exceeding 10 6 Da (1). The sheer size of HA suggests that cells should have very efficient mechanisms for its metabolism. In fact, one-third of the total body HA, which is estimated to be 15 g in a human with a 70-kg body weight, is thought to be turned over daily (2). In skin, the metabolic halflife of HA is 1 to 1.5 days (3). It is believed that high-molecularweight (HMW) HA (10 6 -10 7 Da) is first degraded extracellularly into intermediate-size fragments of 10 -100 kDa. These are then internalized and degraded to monosaccharides by the combined actions of lysosomal hyaluronidase and exoglucosidases (4). Considering the accumulating evidence for the role of HA degradation in tumor invasion and metastasis (5), identifying the molecule(s) that degrade HA on the cell surface is an important biological issue.The HYAL family molecules have been implicated as the major players in HA catabolism. HYAL1 and HYAL2 are expressed widely and postulated to be the key hyaluronidases involved in HA catabolism in somatic tissues. How...
Natural moisturizing factor (NMF) of the stratum corneum (SC) has been established to play important roles in the physical properties of the SC. Few studies, however, have investigated the specific influences of NMF components other than the amino acids. In this study, therefore, we focus on the relationship between the ion content and physical properties of the SC in 40 healthy subjects. Changes in the physical properties of the SC induced by the extraction of NMF were equivalent to the changes that took place from summer to winter, demonstrating the important role of NMF in the physical properties of the SC in healthy subjects. The seasonal changes in the physical properties of the SC from summer to winter were accompanied by significant decreases in the levels of lactate, potassium, sodium, and chloride in the SC. Lactate and potassium were the only components found to correlate significantly with the state of hydration, stiffness, and pH in the SC. Interestingly, the levels of lactate and potassium in the SC were also significantly correlated. Moreover, potassium lactate restored the SC hydration state decreased by extraction of NMF. These results suggest that lactate and potassium may play roles in maintaining the physical properties of the SC in healthy subjects.
Recent research suggests that tight junctions (TJs) are located in the stratum granulosum, where they contribute to the barrier function of the epidermis. In this study, we investigated the formation of functional TJs in cultured normal human epidermal keratinocytes. We observed the development of permeability barrier function through the process of Ca reversibly disrupted the continuous network of TJ proteins and the permeability barrier. We also found that the addition of ochratoxin A weakened the permeability barrier and the expression of claudin-4. Our findings suggest that TJ proteins contribute to the permeability barrier in epidermal keratinocytes.
The epidermis has developed physical and immunological barriers that prevent infiltration of deleterious chemicals and pathogens. As a first step to understanding the relationship between these barriers, we investigated whether TLR2 activation functionally alters tight junctions (TJs) in cultured human keratinocytes. Stimulation with peptidoglycan, a ligand for TLR2, elevated the TJ-associated barrier in the space of 3 h. The increase in TJ-associated barrier function due to peptidoglycan stimulation was suppressed by the knockdown of TLR adaptor MyD88 or the pretreatment with TLR2-neutralizing Ab, indicating that TLR2 activation enhanced TJ-associated barrier. One and 3 h after peptidoglycan stimulation, expression levels of the TJ proteins occludin, claudin-1, claudin-4, and ZO-1 were unchanged. However, immunoprecipitation studies demonstrated that the association of phospho-atypical protein kinase Cζ/ι, crucial for TJ biogenesis, with occludin was increased. Significantly, inhibition of atypical protein kinase Cζ/ι activity completely blocked the immediate elevation of the TJ-associated barrier. Finally, peptidoglycan was applied to the stratum corneum surface of a human skin equivalent, and the TJ barrier was evaluated. In the space of 3 h after the stimulation, the amount of intercellular tracer in the stratum corneum incubated from the dermal side was reduced, indicating that the TJ barrier is strengthened via TLR2 activation. Taken together, our findings indicated that infiltration of pathogens into the epidermis immediately enhanced TJ function via TLR2 signaling. Furthermore, the dynamically controlled TJs in skin are considered fundamental in preventing further invasion of pathogens and maintaining cutaneous barrier homeostasis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.