Sparsely spread code division multiple access (SCDMA) is a promising non-orthogonal multiple access technique for future wireless communications. In this paper, we propose a novel trainable multiuser detector called sparse trainable projected gradient (STPG) detector, which is based on the notion of deep unfolding. In the STPG detector, trainable parameters are embedded to a projected gradient descent algorithm, which can be trained by standard deep learning techniques such as back propagation and stochastic gradient descent. Advantages of the detector are its low computational cost and small number of trainable parameters, which enables us to treat massive SCDMA systems. In particular, its computational cost is smaller than a conventional belief propagation (BP) detector while the STPG detector exhibits nearly same detection performance with a BP detector. We also propose a scalable joint learning of signature sequences and the STPG detector for signature design. Numerical results show that the joint learning improves multiuser detection performance particular in the low SNR regime.
Sparse code division multiple access (SCDMA) is a promising non-orthogonal multiple access technique for future wireless communications. In SCDMA, transmitted symbols from multiple users are coded by their own sparse signature sequences, and a base station attempts to detect those symbols using the signature sequences. In this paper, we present a new deep-unfolded multiuser detector called a complex sparse trainable projected gradient (C-STPG) detector for SCDMA systems. Deep unfolding is a deep learning method that tunes trainable parameters in iterative algorithms using supervised data and deep learning techniques. The proposed detector provides a much superior detection performance over that of the LMMSE detector. Other advantages of the proposed detector include a low computational complexity in execution and a low training cost owing to the small number of trainable parameters. In addition, we propose a novel joint learning strategy called gradual sparsification for designing sparse signature sequences based on deep unfolding. This method is computationally efficient in optimizing a set of sparse signature sequences. Numerical results show that the gradual sparsification successfully yields sparse signature sequences with a smaller symbol error rate than those of randomly designed sparse signature sequences.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.