Background: The epidermal growth factor (EGF) and EGF receptor (EGFR) families play important roles in the hyperplastic growth of several tissues as well as tumor growth. Since synovial hyperplasia in rheumatoid arthritis (RA) resembles a tumor, involvement of the EGF/EGFR families in RA pathology has been implied. Although several reports have suggested that ErbB2 is the most important member of the EGFR family for the synovitis in RA, it remains unclear which members of the EGF family are involved. To clarify the EGF-like growth factors involved in the pathology of RA, we investigated the expression levels of seven major EGF-like growth factors in RA patients compared with those in osteoarthritis (OA) patients and healthy control subjects.
SummaryFormation of osteoclasts and consequent joint destruction are hallmarks of rheumatoid arthritis (RA). Here we show that LIGHT, a member of the tumour necrosis factor (TNF) superfamily, induced the differentiation into tartrate-resistant acid phosphatase (TRAP)-positive multinucleated cells (MNCs) of CD14 + monocytes cocultured with nurse-like cells isolated from RA synovium, but not of freshly isolated CD14 + monocytes.Receptor activator of nuclear factor-jB ligand (RANKL) enhanced this LIGHT-induced generation of TRAP-positive MNCs. The MNCs showed the phenotypical and functional characteristics of osteoclasts; they showed the expression of osteoclast markers such as cathepsin K, actin-ring formation, and the ability to resorb bone. Moreover, the MNCs expressed both matrix metalloproteinase 9 (MMP-9) and MMP-12, but the latter was not expressed in osteoclasts induced from CD14 + monocytes by RANKL. Immunohistochemical analysis showed that the MMP-12-producing MNCs were present in the erosive areas of joints in RA, but not in the affected joints of osteoarthritic patients. These findings suggested that LIGHT might be involved in the progression of inflammatory bone destruction in RA, and that osteoclast progenitors might become competent for LIGHT-mediated osteoclastogenesis via interactions with synoviocyte-like nurse-like cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.