BackgroundSampling of saliva for diagnosing Plasmodium falciparum infections is a safe, non-invasive alternative to sampling of blood. However, the use of saliva presents a challenge because lower concentrations of parasite DNA are present in saliva compared to peripheral blood. Therefore, a sensitive method is needed for detection of parasite DNA in saliva. This study utilized two recently reported “ultra-sensitive” PCR assays based on detection of the P. falciparum mitochondrial cox3 gene and the multi-copy nuclear varATS gene. The ultra-sensitive assays have an advantage over standard 18S rRNA gene-based PCR assay as they target genes with higher copy numbers per parasite genome. Stored saliva DNA samples from 60 Cameroonian individuals with infections previously confirmed by 18S rRNA gene PCR in peripheral blood were tested with assays targeting the cox3 and varATS genes.ResultsOverall, the standard 18S rRNA gene-based PCR assay detected P. falciparum DNA in 62% of the stored saliva DNA samples, whereas 77 and 68% of the samples were positive with assays that target the cox3 and varATS genes, respectively. Interestingly, the ultra-sensitive assays detected more P. falciparum infections in stored saliva samples than were originally detected by thick-film microscopy (41/60 = 68%). When stratified by number of parasites in the blood, the cox3 assay successfully detected more than 90% of infections using saliva when individuals had > 1000 parasites/μl of peripheral blood, but sensitivity was reduced at submicroscopic parasitemia levels. Bands on electrophoresis gels were distinct for the cox3 assay, whereas faint or non-specific bands were sometimes observed for varATS and 18S rRNA that made interpretation of results difficult. Assays could be completed in 3.5 and 3 h for the cox3 and varATS assays, respectively, whereas the 18S rRNA gene assays required at least 7 h.ConclusionsThis study demonstrates that a PCR assay targeting the cox3 gene detected P. falciparum DNA in more saliva samples than primers for the 18S rRNA gene. Non-invasive collection of saliva in combination with the proposed cox3 primer-based PCR assay could potentially enhance routine testing of P. falciparum during disease surveillance, monitoring, and evaluation of interventions for malaria elimination.Electronic supplementary materialThe online version of this article (10.1186/s41182-018-0100-2) contains supplementary material, which is available to authorized users.
infections are serious in pregnant women, because VAR2CSA allows parasitized erythrocytes to sequester in the placenta, causing placental malaria (PM). In areas of endemicity, women have substantial malarial immunity prior to pregnancy, including antibodies to merozoite antigens, but produce antibodies to VAR2CSA only during pregnancy. The current study sought to determine the importance of antibodies to VAR2CSA and merozoite antigens in pregnant women in Yaoundé, Cameroon, where malaria transmission was relatively low. A total of 1,377 archival plasma samples collected at delivery were selected (at a 1:3 ratio of PM-positive [PM+] to PM-negative [PM-] women) and screened for antibodies to full-length VAR2CSA and 7 merozoite antigens. Results showed that many PM+ women and most PM- women lacked antibodies to VAR2CSA at delivery. Among PM+ women, antibodies to VAR2CSA were associated with a reduced risk of having high placental parasitemia (odds ratio [OR], 0.432; confidence interval [CI], 0.272, 0.687; = 0.0004) and low-birth-weight (LBW) babies (OR = 0.444; CI, 0.247, 0.799; = 0.0068), even during first pregnancies. Among antibodies to the 7 merozoite antigens, i.e., AMA1, EBA-175, MSP1, MSP2, MSP3, MSP11, and Pf41, only antibodies to MSP3, EBA-175, and Pf41 were associated with reduced risk for high placental parasitemias ( = 0.0389, 0.0291, and 0.0211, respectively) and antibodies to EBA-175 were associated with reduced risk of premature deliveries ( = 0.0211). However, after adjusting for multiple comparisons significance declined. Thus, in PM+ women, antibodies to VAR2CSA were associated with lower placental parasitemias and reduced prevalence of LBW babies in this low-transmission setting.
The commensal microbes of the skin have a significant impact on dermal physiology and pathophysiology. Racial and geographical differences in the skin microbiome are suggested and may play a role in the sensitivity to dermatological disorders, including infectious diseases. However, little is known about the skin microbiome profiles of people living in Central Africa, where severe tropical infectious diseases impose a burden on the inhabitants. This study provided the skin profiles of healthy Cameroonians in different body sites and compared them to healthy Japanese participants. The skin microbiome of Cameroonians was distinguishable from that of Japanese in all skin sites examined in this study. For example, Micrococcus was predominantly found in skin samples of Cameroonians but mostly absent in Japanese skin samples. Instead, the relative abundance of Cutibacterium species was significantly higher in healthy Japanese. Principal coordinate analysis of beta diversity showed that the skin microbiome of Cameroonians formed different clusters from Japanese, suggesting a substantial difference in the microbiome profiles between participants of both countries. In addition, the alpha diversity in skin microbes was higher in Cameroonians than Japanese participants. These data may offer insights into the determinant factors responsible for the distinctness of the skin microbiome of people living in Central Africa and Asia.
Characterization of microbial communities in the skin in healthy individuals and diseased patients holds valuable information for understanding pathogenesis of skin diseases and as a source for developing novel therapies. Notably, resources regarding skin microbiome are limited in developing countries where skin disorders from infectious diseases are extremely common. A simple method for sample collection and processing for skin microbiome studies in such countries is crucial. The aim of this study is to confirm the feasibility of collecting skin microbiota from individuals in Yaoundé, a capital city of Cameroon, and subsequent extraction of bacterial DNA in a resource limited setting. Skin swabs from several individuals in Yaoundé were successfully obtained, and sufficient amount of bacterial 16S ribosomal RNA-coding DNA was collected, which was confirmed by quantitative PCR. The median copy number of 16S ribosomal RNA gene varied across participants and collection sites, with significantly more copies in samples collected from the forehead compared to the left and right forearm, or back. This study demonstrated that collecting surface skin microbes using our swabbing method is feasible in a developing country. We further showed that even with limited resources, we could collect sufficient amount of skin microbiota from the inhabitants in Yaoundé where no studies of skin microbiome were reported, which can be passed to further metagenomic analysis such as next generation sequencing.
In high malaria transmission settings, the use of sulfadoxine-pyrimethamine-based intermittent preventive treatment during pregnancy (IPTp-SP) has resulted in decreased antibody (Ab) levels to VAR2CSA. However, information of Ab levels in areas of low or intermediate malaria transmission after long-term implementation of IPTp-SP is still lacking. The present study sought to evaluate antibody prevalence and levels in women at delivery in Etoudi, a peri-urban area in the capital of Yaoundé , Cameroon, that is a relatively low-malaria transmission area. Peripheral plasma samples from 130 pregnant women were collected at delivery and tested for IgG to the full-length recombinant VAR2CSA (FV2) and its most immunogenic subdomain, DBL5. The study was conducted between 2013 and 2015, approximately ten years after implementation of IPTp-SP in Cameroon. About 8.6% of the women attending the clinic had placental malaria (PM). One, two or 3 doses of SP did not impact significantly on either the percentage of women with Ab to FV2 and DBL5 or Ab levels in Ab-positive women compared to women not taking SP. The prevalence of Ab to FV2 and DBL5 was only 36.9% and 36.1%, respectively. Surprisingly, among women who had PM at delivery, only 61.5% and 57.7% had Ab to FV2 and DBL5, respectively, with only 52.9% and 47.1% in PM-positive paucigravidae and 77.7% of multigravidae having Ab to both antigens. These results suggest that long-term implementation of IPTp-SP in a lowmalaria transmission area results in few women having Ab to VAR2CSA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.