Pregnancy is associated with a transient increase in risk for breast cancer. However, the mechanism underlying pregnancy‐associated breast cancer (PABC) is poorly understood. Here, we identify the protease pappalysin‐1 (PAPP‐A) as a pregnancy‐dependent oncogene. Transgenic expression of PAPP‐A in the mouse mammary gland during pregnancy and involution promotes the deposition of collagen. We demonstrate that collagen facilitates the proteolysis of IGFBP‐4 and IGFBP‐5 by PAPP‐A, resulting in increased proliferative signaling during gestation and a delayed involution. However, while studying the effect of lactation, we found that although PAPP‐A transgenic mice lactating for an extended period of time do not develop mammary tumors, those that lactate for a short period develop mammary tumors characterized by a tumor‐associated collagen signature (TACS‐3). Mechanistically, we found that the protective effect of lactation is associated with the expression of inhibitors of PAPP‐A, STC1, and STC2. Collectively, these results identify PAPP‐A as a pregnancy‐dependent oncogene while also showing that extended lactation is protective against PAPP‐A‐mediated carcinogenesis. Our results offer the first mechanism that explains the link between breast cancer, pregnancy, and breastfeeding.
The anti-apoptotic protein Mcl-1 plays a major role in multiple myeloma (MM) cell survival as well as bortezomib- and microenvironmental forms of drug resistance in this disease. Consequently, there is a critical need for strategies capable of targeting Mcl-1-dependent drug resistance in MM. The present results indicate that a regimen combining Chk1 with MEK1/2 inhibitors effectively kills cells displaying multiple forms of drug resistance stemming from Mcl-1 up-regulation in association with direct transcriptional Mcl-1 down-regulation and indirect disabling of Mcl-1 anti-apoptotic function through Bim up-regulation and increased Bim/Mcl-1 binding. These actions release Bak from Mcl-1, accompanied by Bak/Bax activation. Analogous events were observed in both drug-naïve and acquired bortezomib-resistant MM cells displaying increased Mcl-1 but diminished Bim expression, or cells ectopically expressing Mcl-1. Moreover, concomitant Chk1 and MEK1/2 inhibition blocked Mcl-1 up-regulation induced by IL-6/IGF-1 or co-culture with stromal cells, effectively overcoming microenvironment-related drug resistance. Finally, this regimen down-regulated Mcl-1 and robustly killed primary CD138+ MM cells, but not normal hematopoietic cells. Together, these findings provide novel evidence that this targeted combination strategy could be effective in the setting of multiple forms of Mcl-1-related drug resistance in MM.
Abstract:The reprogramming of the mitochondria of cancer cells is essential for their growth. However, such reprogramming leads to the increased formation of reactive oxygen species, which can lead to damage to the organelle. This review summarizes the mechanisms that protect the mitochondrial network against oxidative stress. Further, since several transcription factors have now been linked to the mitochondrial unfolded protein response (UPR mt ) and regulate the expression of one or more genes involved in these "mito-protective" mechanisms, the UPR mt is a prime candidate to coordinate the maintenance of the integrity of the mitochondria under oxidative stress conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.