Attachment of Helicobacter pylori to gastric epithelial cells induces various cellular responses, including the tyrosine phosphorylation of an unknown 145-kD protein and interleukin 8 production. Here we show that this 145-kD protein is the cagA product of H. pylori, an immunodominant, cytotoxin-associated antigen. Epithelial cells infected with various H. pylori clinical isolates resulted in generation of tyrosine-phosphorylated proteins ranging from 130 to 145 kD in size that were also induced in vitro by mixing host cell lysate with bacterial lysate. When epithelial cells were infected with [35S]methionine-labeled H. pylori, a radioactive 145-kD protein was detected in the immunoprecipitates with antiphosphotyrosine antibody or anti-CagA (cytotoxin-associated gene A) antibody. Consistently, the 145-kD protein recognized by the anti-CagA and antiphosphotyrosine antibodies was induced in epithelial cells after infection of wild-type H. pylori but not the cagA::Km mutant. Furthermore, the amino acid sequence of the phosphorylated 145-kD protein induced by H. pylori infection was identical to the H. pylori CagA sequence. These results reveal that the tyrosine-phosphorylated 145-kD protein is H. pylori CagA protein, which may be delivered from attached bacteria into the host cytoplasm. The identification of the tyrosine-phosphorylated protein will thus provide further insights into understanding the precise roles of CagA protein in H. pylori pathogenesis.
Environmental changes of tyrosine and tryptophan residues of hemoglobin (Hb) upon its T to R transition of quaternary structure were investigated with ultraviolet resonance Raman (UVRR) spectroscopy excited at 235 nm. DeoxyHb A (T-form) showed a UVRR spectrum distinctly different from those of the ligated Hbs (R-form) including oxyHb, COHb, and metHb A, whereas the ligated Hbs exhibited similar UVRR spectra irrespective of the ligand species and the oxidation state of the heme. To characterize the spectral change of Trp-beta 37 at the alpha 1 beta 2 interface due to the quaternary structure transition, the UVRR spectra of Hb A were compared with the corresponding spectra of Hb Hirose (Trp-beta 37-->Ser). A difference spectrum between deoxyHb A and deoxyHb Hirose showed only Trp resonance Raman (RR) bands, which were reasonably ascribed to Trp-beta 37 in deoxyHb A. RR bands at 873 cm-1 (W17) and at 1360 and 1343 cm-1 (W7, Fermi doublet) indicated that the indole ring of Trp-beta 37 in deoxyHb A formed a strong hydrogen bond at the N1H site in hydrophobic environments. Tyr residues in deoxyHb Hirose seemed to be in the same environments as those of deoxyHb A. In contrast, the difference spectrum between Hb A and Hb Hirose in the ligated state displayed peaks for RR bands of both Trp and Tyr. The difference spectra were unaltered by the addition of 5 mM inositol hexaphosphate. This means that the differences were not caused by the tetramer to dimer dissociation but by a conformation change within a tetramer. Comparison of the Hb A-Hb Hirose difference spectra in the oxy and deoxy states revealed that the oxygenation-induced changes of Trp RR bands arose mostly from Trp-beta 37 with the small portion of remaining changes coming from Trp-beta 15, demonstrating that Trp-beta 37 plays a pivotal role in the quaternary structural change in Hb A.
We found that recombinant human adult hemoglobin (rHb A) expressed in Escherichia coli showed heterogeneity of components with the intensity of a positive CD band at 260 nm and that it could be resolved into three components (SP-1, SP-2, and SP-3) by SP-Sepharose column chromatography. 1H NMR revealed that SP-1 is identical with native Hb A, while SP-2 and SP-3 largely contain the reversed heme isomer in both the alpha and beta subunits, with contents of approximately 50 and >80% in SP-2 and SP-3, respectively. Rotation of the heme 180 degrees about the 5,15-meso axis (reversed heme) causes an interexchange of the methyl groups at positions 2 and 7 with the vinyl groups at positions 8 and 3, respectively. To examine the effect of the modification of the heme-protein contact on the structure and function of Hb A, we compared the 1H NMR, CD, and oxygen binding properties of the three components with those of native Hb A. Native Hb A exhibits a distinct positive CD band in both the near-UV and Soret regions, but rHb A with reversed heme exhibits a very weak positive CD band at 260 nm and a prominent negative CD band in the Soret region. Cooperativity, as measured by Hill's n value, decreased from 3.18 (SP-1) to 2.94 (SP-2) to 2.63 (SP-3) with an increase in the reversed heme orientation. The effect of an allosteric effector, inositol hexaphosphate (IHP), on the oxygen binding properties was also reduced in rHb A with reversed heme. These results indicate that changes in the heme-globin contact exert a discernible influence on CD spectra and cooperative oxygen binding.
The alpha-abnormal hemoglobin (Hb) M variants show physiological properties different from the beta-abnormal Hb M variants, that is, extremely low oxygen affinity of the normal subunit and extraordinary resistance to both enzymatic and chemical reduction of the abnormal met-subunit. To get insight into the contribution of heme structures to these differences among Hb M's, we examined the 406.7-nm excited resonance Raman (RR) spectra of five Hb M's in the frequency region from 1700 to 200 cm(-1). In the high-frequency region, profound differences between met-alpha and met-beta abnormal subunits were observed for the in-plane skeletal modes (the nu(C=C), nu(37), nu(2), nu(11), and nu(38) bands), probably reflecting different distortions of heme structure caused by the out-of-plane displacement of the heme iron due to tyrosine coordination. Below 900 cm(-1), Hb M Iwate [alpha(F8)His --> Tyr] exhibited a distinct spectral pattern for nu(15), gamma(11), delta(C(beta)C(a)C(b))(2,4), and delta(C(beta)C(c)C(d))(6,7) compared to that of Hb M Boston [alpha(E7)His --> Tyr], although both heme irons are coordinated by Tyr. The beta-abnormal Hb M variants, namely, Hb M Hyde Park [beta(F8)His --> Tyr], Hb M Saskatoon [beta(E7)His --> Tyr], and Hb M Milwaukee [beta(E11)Val --> Glu], displayed RR band patterns similar to that of metHb A, but with some minor individual differences. The RR bands characteristic of the met-subunits of Hb M's totally disappeared by chemical reduction, and the ferrous heme of abnormal subunits was no longer bonded with Tyr or Glu. They were bonded to the distal (E7) or proximal (F8) His, and this was confirmed by the presence of the nu(Fe-His) mode at 215 cm(-1) in the 441.6-nm excited RR spectra. A possible involvement of heme distortion in differences of reducibility of abnormal subunits and oxygen affinity of normal subunits is discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.