Potentiation of amylase secretion by the combination of isoproterenol and substance P was examined in perfused rat parotid acinar cells. Combined additions of substance P and isoproterenol evoked biphasic changes in amylase secretion, an initial large peak and the following sustained plateau: the magnitudes of the both responses were higher than the sum of the responses induced by each agonist alone. Isoproterenol also increased the maximum response and the apparent affinity (EC50) for substance P to evoke the initial peak response; the EC50 values were about 20 and 0.8 nM, respectively, in the absence and the presence of isoproterenol. On the other hand, 1 nM substance P was sufficient for evoking the maximum potentiation of the sustained plateau response. Substance P did not change the EC50 for isoproterenol. The effect of isoproterenol was mimicked with dibutyryl cyclic AMP and agonists that increase parotid cyclic AMP. Omission of Ca2+ or addition of 5 mM nickel chloride almost completely abolished the potentiation of the sustained plateau, but little decreased that of the initial peak. Depletion of Ca2+ in InsP3-sensitive intracellular stores with thapsigargin, on the other hand, decreased the initial peak response, but not the sustained plateau, to substance P. The potentiation was also observed between isoproterenol and Ca2+ ionophores. Switching to the solutions containing higher concentrations of Ca2+ during the continuous stimulation with isoproterenol or IBMX evoked a large, but transient, response of amylase secretion. Time course of changes in amylase secretion induced by isoproterenol and substance P in combination was very similar to that of substance P, but not of isoproterenol. Isoproterenol did not enhance the effect of substance P on [Ca2+]i. These results show that the potentiation is mainly, if not totally, caused by cyclic AMP-induced enhancement of the potency and the efficacy in the pathway regulated by Ca2+.
This study examines the activation of divalent cation entry into rat parotid gland acinar cells by using Mn2+ as a Ca2+ surrogate cation. Following muscarinic-cholinergic stimulation of dispersed parotid acini with carbachol (10 microM), the onset of internal Ca2+ release (cytosolic [Ca2+], [Ca2+]i, increase) and the stimulation of Mn2+ entry (increase in fura2 quenching) are not simultaneously detected. [Ca2+]i elevation, due to intracellular release, is detected almost immediately following carbachol addition and peak [Ca2+]i increase occurs at 6.0 +/- 0.8 sec. However, there is an interval (apparent lag) between carbachol addition and the detection of stimulated Mn2+ entry. This apparent lag is decreased from 26 +/- 3.1 sec to 9.2 +/- 1.5 sec when external Mn2+ ([Mn2+]0) is increased from 12.5 to 500 microM. It is not decreased further with increase in [Mn2+]0 from 500 microM to 1 mM (9.8 +/- 2.1 sec), although both intracellular free Mn2+ and [Mn2+-fura2]/[fura2] increase. Thus, at [Mn2+]0 < 500 microM, the observed lag time is partially due to a limitation in the magnitude of Mn2+ entry. Furthermore, neither peak [Ca2+]i nor the time required to reach peak [Ca2+]i is significantly altered by [Mn2+]0 (12.5 microM to 1 mM). At every [Mn2+]0 tested (i.e., 12.5 microM-1 mM), the apparent lag is significantly greater than the time required to reach peak [Ca2+]i. However, when carbachol stimulation of the [Ca2+]i increase is attenuated by loading the acini with the Ca2+ chelator, 2-bis(O-aminophenoxy)ethane-N,N,N',N'-tetraacetate (BAPTA), there is no detectable lag in carbachol stimulation of Mn2+ entry (with 1 mM [Mn2+]0). Importantly, in BAPTA-loaded acini, carbachol stimulates Mn2+ entry via depletion of the internal Ca2+ pool and not via direct activation of other divalent cation entry mechanisms. Based on these results, we suggest that the apparent lag in the detection of carbachol stimulation of Mn2+ entry into parotid acinar cells is due to a retardation of Mn2+ entry by the initial increase in [Ca2+]i, due to internal release, which most likely occurs proximate to the site of divalent cation entry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.