The 1,5-benzothiazepine moiety is well-known as a versatile pharmacophore, and its derivatives are expected to have antagonism against numerous diseases. Thus, it is desirable to develop a synthetic route that enables facile enantioselective preparation of a wide range of such derivatives. Although the cycloaddition approach could be considered a possible route to these compounds, to date, there has been no precedent of such a protocol. We therefore present the first example of a highly enantioselective net [4 + 3] cycloaddition to afford 1,5-benzothiazepines by utilizing α,β-unsaturated acylammonium intermediates generated by chiral isothiourea catalysts, which undergo two sequential chemoselective nucleophilic attacks by 2-aminothiophenols. This protocol provided cycloadducts in extremely high regioselectivity, with a good-to-excellent stereoselectivity being achieved regardless of the steric and electronic properties of the substrates. This method therefore offers promising synthetic routes for the construction of a library of optically active 1,5-benzothiazepines for assay evaluation.
In a novel organocatalytic formal [3 + 2] cycloaddition to afford chiral 2-oxazolidinones, an enantioselectivity switch could be induced by changing the manner of addition of the reactants, even when the reaction components (cinchona-alkaloid-derived aminothiourea catalyst, substrates, and solvent) were the same.
Chiral spiroketal skeletons are found as core structures in a range of bioactive compounds. These natural compounds and their analogues have attracted much attention in the field of drug discovery. However, methods for their enantioselective construction are limited, and easily available optically active spiroketals are rare. We demonstrate a novel catalytic asymmetric synthesis of spiroketal compounds that proceeds through an intramolecular hemiacetalization/oxy-Michael addition cascade mediated by a bifunctional aminothiourea catalyst. This results in spiroketal structures through the relay formation of contiguous oxacycles, in which multipoint recognition by the catalyst through hydrogen bonding imparts high enantioselectivity. This method offers facile access to spiroketal frameworks bearing an alkyl group at the 2-position, which are prevalent in insect pheromones. Optically active (2S,5S)-chalcogran, a pheromone of the six-spined spruce bark beetle, and an azide derivative could be readily synthesized from the bicyclic reaction product.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.