Clearance of atorvastatin occurs through hepatic uptake by organic anion transporting polypeptides (OATPs) and subsequent metabolism by cytochrome P450 (CYP) 3A4. To demonstrate the relative importance of OATPs and CYP3A4 in the hepatic elimination of atorvastatin in vivo, a clinical cassette microdose study was performed. A cocktail consisting of a microdose of atorvastatin along with probe substrates for OATPs (pravastatin) and CYP3A4 (midazolam) was orally administered to eight healthy volunteers. The pharmacokinetics of this cocktail was observed at baseline, after an oral dose of 600 mg rifampicin (an inhibitor of OATPs), and after an intravenous dose of 200 mg itraconazole (a CYP3A4 inhibitor). Rifampicin increased the pravastatin dose-normalized area under the plasma concentration-time curve (AUC) (4.6-fold), and itraconazole significantly increased the midazolam dose-normalized AUC (1.7-fold). The atorvastatin dose-normalized AUC increased 12-fold when coadministered with rifampicin but did not change when coadministered with itraconazole. These results indicate that hepatic uptake via OATPs makes the dominant contribution to the hepatic elimination of atorvastatin at a subtherapeutic microdose.
Hepatocyte growth factor activator inhibitor type 1 (HAI-1/SPINT1) is a membrane-bound serine protease inhibitor expressed on the surface of epithelial cells. Although HAI-1/SPINT1 is abundantly expressed in the intestinal epithelium, its role in intestinal tumorigenesis is not known. In this study, we investigated the role of Hai-1/Spint1 in intestinal tumorigenesis using mouse models. The membranous Hai-1/Spint1 immunoreactivity was decreased in murine ApcMin/þ tumors and also in carcinogen (azoxymethane treatment followed by dextran sodium sulfate administration)-induced colon tumors compared with the adjacent non-neoplastic epithelium. The decreased immunoreactivity appeared to be due to sheddase activity of membrane-type 1 matrix metalloprotease. Then, we examined the effect of intestine-specific deletion of Spint1 gene on Apc Min/þ mice. The loss ofHai-1/Spint1 significantly accelerated tumor formation in Apc Min/þ mice and shortened their survival periods.Activation of HGF was enhanced in Hai-1/Spint1-deficient Apc Min/þ intestine. Gene expression profiling revealed upregulation of the Wnt/b-catenin signaling circuit, claudin-2 expression, and angiogenesis not only in tumor tissue but also in the background mucosa without macroscopic tumors in Hai-1/Spint1-deficient Apcintestine. Intestinal deletion of Spint1 also enhanced the susceptibility to carcinogen-induced colon tumorigenicity of wild-type Apc mice. Our findings suggest that HAI-1/SPINT1 has a crucial role in suppressing intestinal tumorigenesis, which implies a novel link between epithelial cell surface serine protease inhibitors and protection from carcinogenic stimuli. Cancer Res; 73(8); 2659-70. Ó2013 AACR.
Aberrant expression of MCT4 in carcinoma cells serves as a novel, independent prognostic factor for HCC, indicating a poorer patient outcome.
Hepatocyte growth factor activator inhibitor type 1 (HAI-1) is a membrane-bound serine protease inhibitor that is expressed on the surface of epithelial and carcinoma cells. On the cell surface, HAI-1 regulates membrane-anchored serine proteases, with matriptase being the most critical target. Matriptase is involved in pericellular processing of biologically active molecules, including protease-activated receptor-2 (PAR-2). Previously we reported that S2-CP8 cells, a metastatic variant of the SUIT-2 human pancreatic adenocarcinoma cell line, showed markedly decreased HAI-1 expression. To assess the significance of HAI-1 loss in invasion and spontaneous metastasis of S2-CP8 cells, we established stable S2-CP8 sublines that expressed HAI-1 under the control of a tetracycline-regulated promoter. In vitro migration and invasion assays revealed inhibitory effects of HAI-1 on S2-CP8 cell migration and invasion. Matriptase activity was suppressed by the expression of HAI-1. As the enhanced invasiveness in the absence of HAI-1 was alleviated by knockdown of matriptase by 81% and of PAR-2 completely, and PAR-2 antagonist also suppressed the invasion, matriptase-mediated PAR-2 activation is involved in HAI-1 loss-induced invasion of S2-CP8 cells. We then analyzed the effect of HAI-1 expression on metastasis of S2-CP8 cells in vivo using a nude mouse orthotopic xenograft model. Although approximately 50% of the control mice developed distant metastasis, mice treated with doxycycline to induce HAI-1 expression did not develop metastasis. These data indicate that HAI-1 loss contributes to invasion and dissemination of a highly metastatic subline of SUIT-2, suggesting crucial roles for the balance of pericellular serine proteases/inhibitors in pancreatic cancer progression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.