Herein, we report the stabilization and modulation of layered-herringbone (LHB) packing, which is known to afford high-performance organic thin-film transistors, based on crystal structure analyses and calculations of intermolecular interaction energies for alkyl-substituted organic semiconductor (OSC) crystals. We systematically investigated the alkyl chain-length dependence of the crystal structures, solvent solubilities, and thermal characteristics for three series of symmetrically and asymmetrically alkyl-substituted benzothieno [3,2-b][1]benzothiophenes (BTBTs). All the series exhibit LHB packing when the BTBTs are substituted with relatively long alkyl chains (−C n H 2n+1 ), i.e., n ≥ 4 for monoalkylated, n ≥ 6 for dialkylated, and n ≥ 5 for phenyl-alkylated BTBTs. LHB packing is also evident in the nonsubstituted and diethyl-substituted BTBTs, although those substituted with short alkyl chains generally did not feature LHB packing because of their lack of interchain ordering. The density functional theory calculations of the intermolecular interactions revealed that the BTBT cores inherently generate LHB packing, and the stability is increasingly enhanced by the alignment of longer alkyl chains. It was also found that the LHB packing is stabilized by keeping the size ratios of the total intermolecular attractive forces between the T-shaped and slipped parallel contacts at about 3:2 for all the LHB compounds, despite the slight structural modifications generated by the substituents. We discuss the effects of alkyl substitutions to modulate the LHB packing of the BTBT cores and thus the two-dimensional carrier transport in layered OSC crystals.
Effects of the nearest neighbor Coulomb interaction on nanographene ribbons with zigzag edges are investigated using the extended Hubbard model within the unrestricted Hartree-Fock approximation. The nearest Coulomb interaction stabilizes a novel electronic state with the opposite electric charges separated and localized along both edges, resulting in a finite electric dipole moment pointing from one edge to the other. This charge-polarized state competes with the peculiar spin-polarized state caused by the on-site Coulomb interaction and is stabilized by an external electric field.
We present a Raman study on the phase transitions of organic/inorganic hybrid perovskite materials, CH3NH3PbX3 (X = I, Br), which are used as solar cells with high power conversion efficiency. The temperature dependence of the Raman bands of CH3NH3PbX3 (X = I, Br) was measured in the temperature ranges of 290 to 100 K for CH3NH3PbBr3 and 340 to 110 K for CH3NH3PbI3. Broad ν1 bands at ~326 cm−1 for MAPbBr3 and at ~240 cm−1 for MAPbI3 were assigned to the MA–PbX3 cage vibrations. These bands exhibited anomalous temperature dependence, which was attributable to motional narrowing originating from fast changes between the orientational states of CH3NH3+ in the cage. Phase transitions were characterized by changes in the bandwidths and peak positions of the MA–cage vibration and some bands associated with the NH3+ group.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.