The single-crystal structure of anagliptin,-a]pyrimidine-6-carboxamide, was determined. Two independent molecules were held together by intermolecular hydrogen bonds, and the absolute configuration of the 2-cyanopyrrolidine ring delivered from L-prolinamide was confirmed to be S. The interactions of anagliptin with DPP-4 were clarified by the co-crystal structure solved at 2.85 Å resolution. Based on the structure determined by X-ray crystallography, the potency and selectivity of anagliptin were discussed, and an SAR study using anagliptin derivatives was performed.
Molecular recognition is often mediated by flexible loops that have widely fluctuating structures and are sometimes disordered, but that form particular complex structures following ligand binding. In fact, many loop structures found in the PDB database are too flexible to be determined precisely. A new loop modeling method was therefore developed using force-biased multicanonical molecular dynamics with the implicit solvent model to generate an ensemble of putative loop structures with low free energy values. The method was then used to create ensembles for several flexible loops that were compared with the corresponding NMR and X-ray structures. The induced-fit structural change of dihydrofolate reductase (DHFR) was also predicted from a structural ensemble of ligand-free M20 loop conformations and successive docking simulations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.