The present study shows that the H19 and Igf2r genes, which are imprinted and expressed solely from maternal alleles, are expressed in an unregulatable manner in mouse uniparental, androgenetic, and parthenogenetic fetuses at day 9.5 of gestation. In the androgenetic fetuses, the H19 and Igf2r genes were respectively expressed at 12 and 40% of the levels in biparental fetuses. In addition, the expression of both genes was excessive (1259 and 482%, respectively) in the parthenotes. These expressions of the imprinted genes were not regulated by methylation in the regulatory regions. Moreover, the expression of the antisense Igf2r RNA (Air) was also excessive and was not correlated with Igf2r gene expression in the uniparental fetuses. Taken together, these results indicate that the parental specific expression of imprinted genes is not maintained in particular genes in uniparental embryos, which in turn suggests that both parental genomes are required to establish maternal specific expression of the H19 and Igf2r genes by transacting mechanisms.
Cloned mice typically display abnormal development, such as overgrowth of fetuses and placentae. Quantitative expression analysis of eight imprinted genes (H19, Igf2, Igf2r, Air, Peg1/Mest, Peg3, Nuronatin (Nnat) and Ndn) and an alternate transcript of Igf2 (P0) in embryonic stem cloned fetuses and placentae at days 9.5, 12.5 and 17.5 after mating was carried out by real time PCR to investigate whether epigenetic modification of imprinted genes is responsible for overgrowth of the fetus and placental hypertrophy. In addition, the methylation pattern through the bisulphite sequencing method in differentially methylated regions of H19 and Igf2r was examined in day 9.5 fetuses and placentae. The results showed clearly that the expression of H19 gene decreased in cloned fetuses at days 12.5 and 17.5 after mating and in placentae at day 17.5 after mating, and Igf2 was also repressed in fetuses at days 9.5 and 12.5 after mating and in placentae at day 17.5 after mating. In contrast, the transcription of P0, which is a placental-specific transcript variant of Igf2, increased at more than four times the control in cloned placenta at day 12.5 after mating. Day 9.5 fetuses that have developed normally revealed only hypermethylated alleles in the H19 differently methylated region (DMR), and both hyper-and hypomethylated alleles in the Igf2r DMR2. These results show that inappropriate reprogramming in some imprinted genes affects the development of cloned embryos, and that aberrant P0 Igf2 transcription in particular may cause the overgrowth of cloned fetuses and placentae.
In mammals, both maternal and paternal genomes are required for a fetus to develop normally to term. This requirement is due to the epigenetic modification of genomes during gametogenesis, which leads to an unequivalent expression of imprinted genes between parental alleles. Parthenogenetic mouse embryos that contain genomes from nongrowing (ng) and fully grown (fg) oocytes can develop into 13.5-day-old fetuses, in which paternally and maternally expressed imprinted genes are expressed and repressed, respectively, from the ng oocyte allele. The H19 gene, however, is biallelically expressed with the silent status Igf2 in such parthenotes. In this study, we examined whether the regulation of H19 monoallelic expression enhances the survival of parthenogenetic embryos. The results clearly show that the ng(H19-KO)/fg(wt) parthenogenetic embryos carrying the ng-oocyte genome that had been deleted by the H19 transcription unit successfully developed as live fetuses for 17.5 gestation days. Control experiments revealed that this unique phenomenon occurs irrespective of the genetic background effect. Quantitative gene expression analysis showed that day 12.5 ng(H19-KO)/fg(wt) parthenogenetic fetuses expressed Igf2 and H19 genes at <2 and 82% of the levels in the controls. Histological analysis demonstrated that the placenta of ng(H19-KO)/fg(wt) parthenotes was afflicted with atrophia with severe necrosis and other anomalies. The present results suggest that the cessation of H19 gene expression from the ng-allele causes extended development of the fetus and that functional defects in the placenta could be fatal for the ontogeny.
Abstract. Uniparental mouse embryos are generally used in the study of imprinting mechanisms as models to determine parental expression of imprinted genes. In this study, we used the real-time RT-PCR method to carry out a quantitative analysis of the expression of the insulin-like growth factor II (Igf2) gene, which is imprinted and expressed solely from the paternal allele, in androgenetic and parthenogenetic fetuses at day 9.5 of gestation. The mean expression, relative to that of control biparental fetuses, was detected to be 319% (90 to 585%) in androgenetic fetuses and 5.9% (3.7 to 9.5%) in parthenogenetic fetuses. The present results confirm that parental-specific expression of the Igf2 gene is maintained in uniparental fetuses, and also show that the real-time RT-PCR procedure is an effective method for quantitative analysis of gene expression using amounts of mRNA that are too small for other methods to detect.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.