These findings suggest that the depressed function of DC is associated with pathogenesis of HCC with HBV or HCV infection.
The aim of the present study was to determine the effects of dietary proteins on the oxidation of dietary carbohydrate and lipids in type II diabetic mice. KK-A(y) strain mice were provided free access to a high fat diet (30% of energy as fat) for an initial 4-wk period to induce diabetes. To reduce body weight gain, the mice were subsequently fed restrictive isoenergetic and isonitrogenous diets (35% of energy as protein and 5% as fat) based on either casein or soy protein isolate hydrolysate (SPI-H) for 4 wk. To measure exogenous carbohydrate and lipid oxidation, the mice were fed a diet containing (13)C-glucose or (13)C-triolein while they were in a respiratory chamber for 72 h. Postprandial energy expenditure was higher in the SPI-H than in the casein group; this difference was due to an increase in postprandial exogenous and endogenous carbohydrate oxidation. There were no differences in 24-h energy expenditure between dietary groups. Oxidation of exogenous carbohydrate tended to be higher (P = 0.054) in the SPI-H group during the 24 h of measurement. Fecal excretion of (13)C-glucose was lower but the excretion of lipid was higher in mice fed the SPI-H diet than in casein-fed mice. These results indicate that in type II diabetic mice, dietary SPI-H not only inhibits the absorption of dietary lipids and increases the absorption of dietary carbohydrates but also augments postprandial energy expenditure, which is accompanied by a postprandial increase in oxidation of dietary carbohydrates.
We investigated the effect of resistance training and fish protein intake on the motor unit firing pattern and motor function in elderly. Fifty healthy elderly males and females (69.2 ± 4.7 years) underwent 6 weeks of intervention. We applied the leg-press exercise as resistance training and fish protein including Alaska pollack protein (APP) as nutritional supplementation. Subjects were divided into four groups: fish protein intake without resistance training (APP-CN, n = 13), placebo intake without resistance training (PLA-CN, n = 12), fish protein intake with resistance training (APP-RT, n = 12), and placebo intake with resistance training (PLA-RT, n = 13). Motor unit firing rates were calculated from multi-channel surface electromyography by the Convolution Kernel. For the chair-stand test, while significant increases were observed at 6 weeks compared with 0 week in all groups (p < 0.05), significant increases from 0 to 3 weeks and 6 weeks were observed in APP-RT (18.2 ± 1.9 at 0 week to 19.8 ± 2.2 at 3 weeks and 21.2 ± 1.9 at 6 weeks) (p < 0.05). Increase and/or decrease in the motor unit firing rate were mainly noted within motor units with a low-recruitment threshold in APP-RT and PLA-RT at 3 and 6 weeks (12.3 pps at 0 week to 13.6 pps at 3 weeks and 12.1 pps at 6 weeks for APP-RT and 12.9 pps at 0 week to 13.9 pps at 3 weeks and 14.1 pps at 6 weeks for PLA-RT at 50% of MVC) (p < 0.05), but not in APP-CN or PLA-CN (p > 0.05). Time courses of changes in the results of the chair-stand test and motor unit firing rate were different between APP-RT and PLA-RT. These findings suggest that, in the elderly, the effect of resistance training on the motor unit firing rate is observed in motor units with a low-recruitment threshold, and additional fish protein intake modifies these adaptations in motor unit firing patterns and the motor function following resistance training.
Assessments of both neural and muscular adaptations during interventions would provide valuable information for developing countermeasures to age-related muscle dysfunctions. We investigated the effect of fish protein ingestion on training-induced neural and muscular adaptations in older adults. Twenty older adults participated 8 weeks of isometric knee extension training intervention. The participants were divided into two groups who took fish protein (n = 10, Alaska pollack protein, APP) or casein (n = 10, CAS). Maximal muscle strength during knee extension, lower extremity muscle mass (body impedance method), and motor unit firing pattern of knee extensor muscle (high-density surface electromyography) were measured before, during, and after the intervention. Muscle strength were significantly increased in both CAS (124.7 ± 5.8%) and APP (117.1 ± 4.4%) after intervention (p < .05), but no significant differences between the groups were observed (p > .05). Significant increases in lower extremity muscle mass from 0 to 8 weeks were demonstrated only for APP (102.0 ± 3.2, p < .05). Greater changes in motor unit firing pattern following intervention were represented in CAS more than in APP. These results suggest that nutritional supplementations could modulate neural and muscular adaptations following resistance training and fish protein ingestion preferentially induces muscular adaptation without the detectable neural adaptation in older adults.
To study the preventive effect of supplemented chromium picolinate (CrPic) on the development of diabetic nephropathy in mice, we analyzed the effects of CrPic supplementation on renal function and concentrations of serum glucose and tissue chromium (Cr). In experiment 1, male KK-Ay obese diabetic mice were fed either a control diet (control) or a diet supplemented with 2 mg/kg diet (Cr2) or 10 mg/kg diet (Cr10) of Cr for 12 wk. Cr10 significantly ameliorated hyperglycemia after a glucose load, creatinine clearance rates, and urinary microalbumin levels (p<0.05). In experiment 2, the Cr10 diet was fed to male KK-Ay obese diabetic mice and C57BL nondiabetic mice for 4 wk. The CrPic diet reduced urinary albumin excretion in the diabetic mice (p<0.05). Inductively coupled plasma-mass spectrometry analysis revealed that the renal Cr content and the recovery of renal Cr concentration after Cr supplementation were significantly lower in the diabetic mice than in the nondiabetic mice (p<0.01). These observations suggest that Cr supplementation of type 2 diabetic mice reduces the symptoms of hyperglycemia and improves the renal function by recovering renal Cr concentration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.