Molecular and cellular mechanisms of epithelial-mesenchymal transition (EMT), crucial in development and pathogenesis, are still poorly understood. Here we provide evidence that distinct cellular steps of EMT occur sequentially during gastrulation. Basement membrane (BM) breakdown is the first recognizable step and is controlled by loss of basally localized RhoA activity and its activator neuroepithelial-transforming-protein-1 (Net1). Failure of RhoA downregulation during EMT leads to BM retention and reduction of its activity in normal epithelium leads to BM breakdown. We also show that this is in part mediated by RhoA-regulated basal microtubule stability. Microtubule disruption causes BM breakdown and its stabilization results in BM retention. We propose that loss of Net1 before EMT reduces basal RhoA activity and destabilizes basal microtubules, causing disruption of epithelial cell-BM interaction and subsequently, breakdown of the BM.
Mesenchymal-epithelial transitions (MET) are crucial for vertebrate organogenesis. The roles of Rho family GTPases in such processes during actual development remain largely unknown. By electroporating genes into chick presomitic mesenchymal cells, we demonstrate that Cdc42 and Rac1 play important and different roles in the MET that generates the vertebrate somites. Presomitic mesenchymal cells, which normally contribute to both the epithelial and mesenchymal populations of the somite, were hyperepithelialized when Cdc42 signaling was blocked. Conversely, cells taking up genes that elevate Cdc42 levels remained mesenchymal. Thus, Cdc42 activity levels appear critical for the binary decision that defines the epithelial and mesenchymal somitic compartments. Proper levels of Rac1 are necessary for somitic epithelialization, since cells with activated or inhibited Rac1 failed to undergo correct epithelialization. Furthermore, Rac1 appears to be required for Paraxis to act as an epithelialization-promoting transcription factor during somitogenesis.
Gastrulation is a developmental process to generate the mesoderm and endoderm from the ectoderm, of which the epithelial to mesenchymal transition (EMT) is generally considered to be a critical component. Due to increasing evidence for the involvement of EMT in cancer biology, a renewed interest is seen in using in vivo models, such as gastrulation, for studying molecular mechanisms underlying EMT. The intersection of EMT and gastrulation research promises novel mechanistic insight, but also creates some confusion. Here we discuss, from an embryological perspective, the involvement of EMT in mesoderm formation during gastrulation in triploblastic animals. Both gastrulation and EMT exhibit remarkable variations in different organisms, and no conserved role for EMT during gastrulation is evident. We propose that a 'broken-down' model, in which these two processes are considered to be a collective sum of separately regulated steps, may provide a better framework for studying molecular mechanisms of the EMT process in gastrulation, and in other developmental and pathological settings.
The in ovo electroporation technique in chicken embryos has enabled investigators to uncover the functions of numerous developmental genes. In this technique, the ubiquitous promoter, CAGGS (CMV base), has often been used for overexpression experiments. However, if a given gene plays a role in multiple steps of development and if overexpression of this gene causes fatal consequences at the time of electroporation, its roles in later steps of development would be overlooked. Thus, a technique with which expression of an electroporated DNA can be controlled in a stage-specific manner needs to be formulated. Here we show for the first time that the tetracycline-controlled expression method, "tet-on" and "tet-off", works efficiently to regulate gene expression in electroporated chicken embryos. We demonstrate that the onset or termination of expression of an electroporated DNA can be precisely controlled by timing the administration of tetracycline into an egg. Furthermore, with this technique we have revealed previously unknown roles of RhoA, cMeso-1 and Pax2 in early somitogenesis. In particular, cMeso-1 appears to be involved in cell condensation of a newly forming somite by regulating Pax2 and NCAM expression. Thus, the novel molecular technique in chickens proposed in this study provides a useful tool to investigate stage-specific roles of developmental genes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.