I examined sex differences in the ranging patterns of 3 female and 3 male wild spider monkeys. Each of the focal males used the home range widely, whereas each of the focal females used a distinct, restricted area of the home range. The males traveled longer distances than the females did. Although males were consistently in larger parties than females were, travel speed was affected by party composition rather than party size. All-male parties traveled faster than other party types did. Foraging manner also differed between sexes. Males spent more time feeding on fruits and less time on flowers and traveled longer distances between feeding trees. Both males and females used salados, where they ate soil and drank water. Salado location is likely to have affected the ranging pattern. Males used boundary areas more frequently than females did, often traveling along the boundary area in alliance with other males. Males also used areas that had been part of neighboring groups' home ranges and were not used at all by females of the group. Greater travel distance of males is likely to be facilitated by consumption of a higher caloric diet. I compare the social structure of spider monkeys with that of chimpanzees, whose society is characterized by male-philopatry and female dispersion.
No abstract
A major function of contact calls in nonhuman primates is to maintain spatial cohesion among individuals in a group. The risks of spatial/visual separation from the group are likely to affect auditory contact behavior, in particular by increasing the call rate. We tested whether the risk of separation influences coo call emission by investigating the variation in call rate among behavioral contexts in two wild populations of Japanese macaques (Macaca fuscata). We focused on caller activity and the degree of visibility within the habitat as primary potential factors mediating call rate. We first estimated the habitat visibility of the two research sites at Yakushima Island (YK) and Kinkazan Island (KZ), Japan. The habitat visibility of YK was significantly more restricted than that of KZ. We then compared the call rate of 20 adult and 12 juvenile female macaques between the two wild populations to examine the potential effects of environmental differences. Both populations had a lower call rate during grooming than during feeding and moving, which are behaviors associated to higher interindividual distances. The call rate of YK adult females was significantly greater than that of both juveniles and KZ adult females, independently of activity. The call rate increased as macaques matured in the YK population, but not in the KZ population, suggesting that different developmental processes involved in contact calling of the two populations. Our findings suggest that separation risk influences call rate, and also imply a possibility of social influence that social structure change effects on the call rates.
Spider monkeys exhibit a fission-fusion type of social organization. I studied party size and party composition in wild long-haired spider monkeys (Ateles belzebuth belzebuth) in three study periods at La Macarena, Colombia and found that overall party size was larger in the fruit-abundant season. Mean party size in which males were observed was relatively stable across seasons. In contrast, the mean party size of females varied. Females were observed in larger parties in the fruit-abundant season than in the fruit-scarce season. Moreover, whereas males associated with each other at an almost equal frequency across seasons, females associated with each other more frequently in the fruitabundant season. Females with infants or small juveniles were more often in association with other individuals than were cycling females. The intensity of individual relationships varied according to season, such that even mothers and sons were not always strongly associated. In a large party, females with infants may gain from predation avoidance but they are at a disadvantage in terms of scramble competition. The balance between these factors may change with fruit availability and may influence party size in different periods. For males, party formation may facilitate the defense of resources from neighboring groups more than provide predation avoidance.
The spatial cohesiveness of a group is an important element that characterizes the social structure of group-living species. Moreover, remaining cohesive is crucial if individuals are to coordinate their activities and reach collective decisions. We measured interindividual spacing in a group of wild Japanese macaques (Macaca fuscata) to assess the spatial cohesiveness of a social group quantitatively. We used simultaneous focal animal sampling, with 2 observers recording individuals' locations with a global positioning system (GPS) during 3 seasons. Interindividual distances differed among seasons; they were short in autumn (mean ± SD: 25.6±20.1 m), intermediate in winter (mean ± SD: 46.3±35.7 m), and long in summer (mean ± SD: 62.3±47.1 m). Measurements taken in summer revealed extremely wide spacing (maximum: 1225 m), suggesting subgrouping. Distances also varied with activity during each season; they were short during resting and grooming, intermediate during foraging, and long during moving. Group cohesion was also influenced by food distribution. More group members were ≤20 m of the focal Int individual during foraging on clumped food than foraging on scattered food in each season, and the group foraged on clumped food most frequently in autumn. Individuals were also likely to aggregate at resting/grooming sites and clumped food patches and to disperse when moving within a day. These results demonstrate that Japanese macaques show considerable variation in spatial cohesiveness both within short time periods, e.g., 1 d, and among seasons, and that they adjust group cohesiveness flexibly depending on the food conditions and foraging tactics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.