Octyl-and nonylphenols in the environment have been proposed to function as estrogens. To gain insight into their structural essentials in binding to the estrogen receptor, a series of phenols with saturated alkyl groups at the para position, HO-C 6 H 4 -C n H 2n+1 (n = 0±12), were examined for their ability to displace [ 3 H]17b-estradiol in the recombinant human estrogen receptor, which was expressed in Sf9 cells using the vaculovirus expression system. All tested para-alkylphenols were found to bind fully to the estrogen receptors in a dose-dependent manner. The interaction of alkylphenols with the receptor became stronger with increase in the number of the alkyl carbons and the activity was maximized with n = 9 of nonylphenol. Phenol (n = 0) exhibited weak but full binding to the receptor, whereas anisole with a protected phenolic hydroxyl group was completely inactive. Also, alkanes such as n-octane, 2,2,4-trimethylpentane corresponding to tert-octane, and n-nonane exhibited no binding. The results indicate that the binding of para-alkylphenols to the estrogen receptor is due to the effect of covalent bonding of two constituents of the phenol and alkyl groups, which correspond to the A-ring and hydrophobic moiety of the steroid structure, respectively. When alkylphenols were examined for their receptor binding conformation by 1 H-NMR measurements and ab initio molecular orbital calculations, it was suggested that nonbranched alkyl groups are in an extended conformation, while branched alkyl groups are in a folded conformation. These results suggest that branched and nonbranched alkyl moieties of alkylphenols interact differently with the lipophilic ligand binding cavity of the estrogen receptor when compared to the binding of 17b-estradiol.
Escherichia coli has many periplasmic phosphatase activities. To test whether it can take up and excrete purine nucleotides, we attempted to completely disrupt periplasmic 5′-nucleotidase activity. A 5′-nucleotidase activity was induced in ushA knockout mutant cells, which lack major 5′-nucleotidase activity, when they were grown with purine nucleotides as the sole carbon source. Using DNA macroarrays to compare global gene expression in wild-type and ushA knockout mutant cells cultured with IMP or GMP as the sole carbon source, we identified two genes that were induced in the ushA knockout mutant cells and encoded signal sequence needed for secretion. One of the genes, aphA, encoded a 5′-nucleotidase activity and was induced by IMP or inosine. An ushA aphA double knockout mutant was shown to be unable to grow on purine nucleotides as the sole carbon source. To investigate the excretion of purine nucleotides, we constructed an ushAaphA double knockout mutant of an inosine-producing strain and found that it accumulated IMP in the medium. In addition, when the guaBA operon was introduced into the ushAaphA double knockout IMP producer, GMP was released into the medium. These observations imply the existence of efflux activity for purine nucleotides in E. coli.
In the present study, we clarified that transforming growth factor beta (TGF-beta) induces cellular senescence in human normal diploid cells, TIG-1, and identified protein kinase Cs (PKCs) as downstream mediators of TGF-beta-induced cellular senescence. Among PKCs, we showed that PKC-delta induced cellular senescence in TIG-1 cells and was activated in replicatively and prematurely senescent TIG-1 cells. The causative role of PKC-delta in cellular senescence programs was demonstrated using a kinase negative PKC-delta and small interfering RNA against PKC-delta. Furthermore, PKC-delta was shown to function in human telomerase reverse transcriptase (hTERT) gene repression. These results indicate that PKC-delta plays a key role in cellular senescence programs, and suggest that the induction of senescence and hTERT repression are coordinately regulated by PKC-delta.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.