BLM and WRN are RecQ DNA helicases essential for genomic stability. Here, we demonstrate that HERC2, a HECT E3 ligase, is critical for their functions to suppress G-quadruplex (G4) DNA. HERC2 interacted with BLM, WRN, and replication protein A (RPA) complexes during the S-phase of the cell cycle. Depletion of HERC2 dissociated RPA from BLM and WRN complexes and significantly increased G4 formation. Triple depletion revealed that HERC2 has an epistatic relationship with BLM and WRN in their G4-suppressing function. In vitro, HERC2 released RPA onto single-stranded DNA (ssDNA) rather than anchoring onto RPA-coated ssDNA. CRISPR/Cas9-mediated deletion of the catalytic ubiquitin-binding site of HERC2 inhibited ubiquitination of RPA2, caused RPA accumulation in the helicase complexes, and increased G4, indicating an essential role for E3 activity in the suppression of G4. Both depletion of HERC2 and inactivation of E3 sensitized cells to the G4-interacting compounds telomestatin and pyridostatin. Overall, these results indicate that HERC2 is a master regulator of G4 suppression that affects the sensitivity of cells to G4 stabilizers. Given that HERC2 expression is frequently reduced in many types of cancers, G4 accumulation as a result of HERC2 deficiency may provide a therapeutic target for G4 stabilizers. Significance: HERC2 is revealed as a master regulator of G-quadruplex, a DNA secondary structure that triggers genomic instability and may serve as a potential molecular target in cancer therapy.
Replication protein A (RPA) binds to and stabilizes single-stranded DNA and is essential for the genome stability. We reported that an E3 ubiquitin ligase, HERC2, suppresses G-quadruplex (G4) DNA by regulating RPA-helicase complexes. However, the precise mechanism of HERC2 on RPA is as yet largely unknown. Here, we show essential roles for HERC2 on RPA2 status: induction of phosphorylation and degradation of the modified form. HERC2 interacted with RPA through the C-terminal HECT domain. Ubiquitination of RPA2 was inhibited by HERC2 depletion and rescued by reintroduction of the C-terminal fragment of HERC2. ATR-mediated phosphorylation of RPA2 at Ser33 induced by low-level replication stress was inhibited by depletion of HERC2. Contrary, cells lacking HERC2 catalytic residues constitutively expressed an increased level of Ser33-phosphorylated RPA2. HERC2mediated ubiquitination of RPA2 was abolished by an ATR inhibitor, supporting a hypothesis that the ubiquitinated RPA2 is a phosphorylated subset. Functionally, HERC2 E3 activity has an epistatic relationship with RPA in the suppression of G4 when judged with siRNA knockdown experiments. Together, these results suggest that HERC2 fine-tunes ATR-phosphorylated RPA2 levels through induction and degradation, a mechanism that could be critical for the suppression of secondary DNA structures during cell proliferation.
The breast and ovarian cancer predisposition protein BRCA1 forms three mutually exclusive complexes with Fanconi anemia group J protein (FANCJ, also called BACH1 or BRIP1), CtIP, and Abraxas/RAP80 through its BRCA1 C terminus (BRCT) domains, while its RING domain binds to BRCA1‐associated RING domain 1 (BARD1). We recently found that the interaction between heterochromatin protein 1 (HP1) and BARD1 is required for the accumulation of BRCA1 and CtIP at sites of DNA double‐strand breaks. Here, we investigated the importance of HP1 and BARD1–HP1 interaction in the localization of FANCJ together with the other BRCA1–BRCT binding proteins to clarify the separate role of the HP1‐mediated pathway from the RNF8/RNF168‐induced ubiquitin‐mediated pathway for BRCA1 function. FANCJ interacts with HP1γ in a BARD1‐dependent manner, and this interaction was enhanced by ionizing radiation or irinotecan hydrochloride treatment. Simultaneous depletion of all three HP1 isoforms with shRNAs disrupts the accumulation of FANCJ and CtIP, but not RAP80, at double‐strand break sites. Replacement of endogenous BARD1 with a mutant BARD1 that is incapable of binding to HP1 also disrupts the accumulation of FANCJ and CtIP, but not RAP80. In contrast, RNF168 depletion disrupts the accumulation of only RAP80, but not FANCJ or CtIP. Consequently, the accumulation of conjugated ubiquitin was only inhibited by RNF168 depletion, whereas the accumulation of RAD51 and sister chromatid exchange were only inhibited by HP1 depletion or disruption of the BARD1–HP1 interaction. Taken together, the results suggest that the BRCA1–FANCJ and BRCA1–CtIP complexes are not downstream of the RNF8/RNF168/ubiquitin pathway, but are instead regulated by the HP1 pathway that precedes homologous recombination DNA repair.
The nucleolus is a nuclear structure composed of ribosomal DNA (rDNA), and functions as a site for rRNA synthesis and processing. The rDNA is guanine-rich and prone to form G-quadruplex (G4), a secondary structure of DNA. We have recently found that HERC2, an HECT ubiquitin ligase, promotes BLM and WRN RecQ DNA helicases to resolve the G4 structure. Here, we report the role of HERC2 in the regulation of nucleolar localization of the helicases. Furthermore, HERC2 inactivation enhances the effects of CX-5461, an inhibitor of RNA polymerase I (Pol I)-mediated transcription of rRNA with an intrinsic G4-stabilizing activity. HERC2 depletion or homozygous deletion of the C-terminal HECT domain of HERC2 prevented the nucleolar localization of BLM and WRN, and inhibited relocalization of BLM to replication stress-induced nuclear RPA foci. HERC2 colocalized with fibrillarin and Pol I subunit RPA194, both of which are required for rRNA transcription. The HERC2 dysfunction enhanced the suppression of pre-rRNA transcription by CX-5461. These results suggest the effect of HERC2 status on the functions of BLM and WRN on rRNA transcription in the nucleolus. Since HERC2 is downregulated in numerous cancers, this effect may be clinically relevant considering the beneficial effects of CX-5461 in cancer treatments.
Background Sacituzumab govitecan is an antibody–drug conjugate that delivers SN-38, an active metabolite of irinotecan, to the target molecule, trophoblast cell-surface antigen 2 (Trop-2). It is a promising drug for triple-negative breast cancer and is anticipated to be effective for luminal breast cancer. The efficacy of the agent relies on the expression of Trop-2 rather than its intracellular function. However, conditions that alter the Trop-2 expression have not been well investigated. Methods We tested a range of clinically related treatments for their effect on Trop-2 expression in cultured breast cancer cell lines. Results The expression level of Trop-2 differed among cell lines, independent of their subtypes, and was highly variable on treatment with kinase inhibitors, tamoxifen, irradiation, and chemotherapeutic agents including irinotecan. While inhibitors of AKT, RSK, and p38 MAPK suppressed the Trop-2 expression, tamoxifen treatment significantly increased Trop-2 expression in luminal cancer cell lines. Notably, luminal cancer cells with acquired resistance to tamoxifen also exhibited higher levels of Trop-2. We identified transcription factor EB (TFEB) as a possible mechanism underlying tamoxifen-induced elevation of Trop-2 expression. Tamoxifen triggers dephosphorylation of TFEB, an active form of TFEB, and the effect of tamoxifen on Trop-2 was prevented by depletion of TFEB. A luciferase reporter assay showed that Trop-2 induction by TFEB was dependent on a tandem E-box motif within the Trop-2 promoter region. Conclusions Overall, these results suggest that the effectiveness of sacituzumab govitecan could be altered by concomitant treatment and that tamoxifen could be a favorable agent for combined therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.