An important role of voltage-gated sodium channels (VGSCs) in many different pain states has been established in animal models and humans wherein sodium channel blockers partially ameliorate pain. However, behavioral tests for screening analgesics that exhibit pharmacologic action by acting on VGSCs are rarely reported, and there are no studies on antinociception using veratrine as a nociceptive agent. The aim of the present study was to examine the amount of nociceptive behavior evoked by subcutaneous administration of veratrine into the hind paw and investigate whether veratrine can be used as a VGSC agonist to test the pharmacological properties of candidate analgesics via sodium channel blockade. We report for the first time that intraplantar injection of veratrine produced a reproducible nociceptive response in mice. Furthermore, several sodium channel blockers, namely carbamazepine, valproate, mexiletine, and the selective Nav1.7 inhibitor PF-04856264, but not flecainide or pilsicainide, reduced veratrine-induced nociception. In contrast, calcium channel blockers gabapentin and ethosuximide did not change veratrine-induced nociception. The veratrine test in mice might be a useful tool, at least in part, to evaluate the potential analgesic effect of sodium channel blockers.
We investigated whether tramadol could suppress both neuropathic and inflammatory pain in mice at the same dose level. We also examined the effects of drugs metabolized by glucuronidase, such as acetaminophen (ACAP), indomethacin, probenecid, and valproate, on the antinociceptive activity of tramadol. The administration of 5.6 or 10 mg/kg tramadol suppressed cuff-induced mechanical allodynia, but 10 mg/kg tramadol did not suppress complete Freund's adjuvant (CFA)-induced mechanical allodynia. Although neither tramadol (10 mg/kg) nor ACAP (100 mg/kg) alone produced an antinociceptive effect, their combination suppressed CFA-induced mechanical allodynia. Moreover, pretreatment naloxone, an opioid receptor antagonist, significantly attenuated the antinociceptive effects induced by the combination of tramadol and ACAP and slowed gastrointestinal transit. Similar to ACAP, the combination of tramadol and probenecid or valproate, which has the potential to inhibit uridine 5′-diphosphate (UDP)-glucuronosyltransferase (UGT), also suppressed the CFA-induced mechanical allodynia and slowed gastrointestinal transit. We concluded that tramadol was more beneficial for the treatment of neuropathic pain than inflammatory pain. Furthermore, the antinociceptive effects of the tramadol and ACAP combination were mediated by the μ-opioid receptor, and were thought to be related, at least in part, to the accumulation of the active metabolite, M1.
Antidepressants exert their analgesic effects by inhibiting the reuptake of noradrenaline. Several antidepressants have been shown to block the sodium channels, which might contribute to their analgesic potency. The aim of this study was to determine whether serotonin-noradrenaline reuptake inhibitors (SNRIs) could produce antinociceptive effects via sodium channel blockade using the veratrine test in mice. Furthermore, the effects of these agents on the veratrine test were examined to elucidate the effects of several antidepressants and tramadol on sodium channels. The administration of duloxetine (10 mg/kg) and venlafaxine (30 mg/kg) suppressed cuff-induced mechanical allodynia; however, these antinociceptive effects were only partially suppressed by atipamezole. Furthermore, duloxetine and venlafaxine demonstrated antinociceptive effects via sodium channel blockade, as assayed by the veratrine test. In addition, several antidepressants, including amitriptyline, paroxetine and mirtazapine, reduced veratrine-induced nociception.In contrast, milnacipran and tramadol did not alter the veratrine-induced nociception. These results indicated that, in addition to the primary action of SNRIs on monoamine transporters, sodium channel blockade might be involved in the antinociceptive activities of duloxetine and venlafaxine, but not milnacipran.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.