To understand the molecular basis of the endodormancy of buds of perennial plants, we searched for the genes that are expressed preferentially in endodormant lateral buds of the deciduous fruit tree japanese apricot (Prunus mume Sieb. et Zucc.) using suppression subtractive hybridization with mirror orientation selection (SSH/MOS). We generated two SSH/MOS libraries containing gene pools that are expressed preferentially in endodormant buds in comparison with paradormant or ecodormant buds to search for the genes that are upregulated by endodormancy induction or down-regulated by endodormancy release, respectively. Differential screening and sequencing indicated that genes involved in gibberellin metabolism, stress resistance, cell wall modification, and signal transduction, such as transcription factors, are upregulated in endodormant buds. After a further expression survey and full-length cDNA cloning, we found that a gene similar to the SVP/AGL24-type MADS-box transcription factor showed endodormancy-associated expression. Seasonal expression analysis suggested that the SVP/AGL24 homolog in japanese apricot might be involved in endodormancy regulation of its lateral buds.
In this study, we investigated seasonal changes in protein profiles in dormant flower buds of Japanese apricot (Prunus mume Siebold Zucc.) cultivars 'Ellching', from subtropical Taiwan, and 'Nanko', from temperate Japan. One protein, isolated by two-dimensional polyacrylamide gel electrophoresis of flower bud extracts, was shown by peptide sequencing to be a dehydrin (the group of D-11 LEA (late embryogenesis-abundant) proteins). Patterns of dehydrin protein and transcript accumulation differed between the cultivars, with greater accumulations and longer persistence in 'Nanko' than in 'Ellching'. These differences correspond with the greater requirement for chilling to break flower bud dormancy in 'Nanko' than in 'Ellching'. Our study supports the findings of earlier work comparing dehydrin expression in the bark tissue of the evergreen and deciduous peach (Prunus persica (L.) Batsch) genotypes, and suggests that the role of dehydrin during the dormant season is common to all Prunus species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.