We have carried out large-scale computational quantum chemistry calculations on the K computer to obtain heats of formation for C60 and some higher fullerenes with the DSD-PBE-PBE/cc-pVQZ double-hybrid density functional theory method. Our best estimated values are 2520.0 ± 20.7 (C60), 2683.4 ± 17.7 (C70), 2862.0 ± 18.5 (C76), 2878.8 ± 13.3 (C78), 2946.4 ± 14.5 (C84), 3067.3 ± 15.4 (C90), 3156.6 ± 16.2 (C96), 3967.7 ± 33.4 (C180), 4364 (C240) and 5415 (C320) kJ mol(-1). In our assessment, we also find that the B3-PW91-D3BJ and BMK-D3(BJ) functionals perform reasonably well. Using the convergence behavior for the calculated per-atom heats of formation, we obtained the formula ΔfH per carbon = 722n(-0.72) + 5.2 kJ mol(-1) (n = the number of carbon atoms), which enables an estimation of ΔfH for higher fullerenes more generally. A slow convergence to the graphene limit is observed, which we attribute to the relatively small proportion of fullerene carbons that are in "low-strain" regions. We further propose that it would take tens, if not hundreds, of thousands of carbons for a fullerene to roughly approach the limit. Such a distinction may be a contributing factor to the discrete properties between the two types of nanomaterials. During the course of our study, we also observe a fairly reliable means for the theoretical calculation of heats of formation for medium-sized fullerenes. This involves the use of isodesmic-type reactions with fullerenes of similar sizes to provide a good balance of the chemistry and to minimize the use of accompanying species.
The valence p ® p* excited states of anthracene and naphthacene are studied with multireference perturbation theory with complete active space selfconsistent ®eld reference functions. The predicted spectra provide a consistent assignment of all one-and twophoton spectra and T-T spectra of low-lying valence p ® p* excited states of anthracene and naphthacene. The present theory predicts the valence p ® p* excitation energies with an accuracy of 0.15 eV for anthracene and of 0.25 eV or better for naphthacene. The excited states of anthracene and naphthacene are compared with those of benzene and naphthalene studied previously. The present calculations predict that, going from anthracene to naphthacene, there is a symmetry reversal of the two lowest singlet state transitions, but not for the triplet, just as indicated by the experimental data. Some general trends of polyacene excited states are discussed based on the calculated results for benzene to naphthacene. Conclusive results obtained for anthracene and naphthacene can be used as a model for understanding the excited states of larger polyacenes.
Photoionization-induced water migration in the trans-formanilide-water 1:1 cluster, FA-(H(2)O)(1), has been investigated by using IR-dip spectroscopy, quantum chemical calculations, and ab initio molecular dynamics simulations. In the S(0) state, FA-(H(2)O)(1) has two structural isomers, FA(NH)-(H(2)O)(1) and FA(CO)-(H(2)O)(1), where a water molecule is hydrogen-bonded (H-bonded) to the NH group and the CO group, respectively. In addition, the S(1)-S(0) origin transition of FA(CO)-(H(2)O)(2), where a water dimer is H-bonded to the CO group, was observed only in the [FA-(H(2)O)(1)](+) mass channel, indicating that one of the water molecules evaporates completely in the D(0) state. These results are consistent with a previous report [Robertson, E. G. Chem. Phys. Lett., 2000, 325, 299]. In the D(0) state, however, [FA-(H(2)O)(1)](+) produced by photoionization via the S(1)-S(0) origin transitions of FA(NH)-(H(2)O)(1) and FA(CO)-(H(2)O)(1) shows essentially the same IR spectra. Compared with the theoretical calculations, [FA-(H(2)O)(1)](+) can be assigned to [FA(NH)-(H(2)O)(1)](+). This means that the water molecule in [FA-(H(2)O)(1)](+) migrates from the CO group to the NH group when [FA-(H(2)O)(1)](+) is produced by photoionization of FA(CO)-(H(2)O)(1). [FA-(H(2)O)(1)](+) produced by photoionization of FA(CO)-(H(2)O)(2) also shows the IR spectrum corresponding to [FA(NH)-(H(2)O)(1)](+). In this case, the water migration from the CO group to the NH group occurs with the evaporation of a water molecule. Ab initio molecular dynamics simulations revealed the water migration pathway in [FA-(H(2)O)(1)](+). The calculations of classical electrostatic interactions show that charge-dipole interaction between FA(+) and H(2)O induces an initial structural change in [FA-(H(2)O)(1)](+). An exchange repulsion between the lone pairs of the CO group and H(2)O in [FA-(H(2)O)(1)](+) also affects the initial direction of the water migration. These two factors play important roles in determining the initial water migration pathway.
BackgroundNuclear receptor subfamily 1, group I, member 2 (NR1I2), commonly known as steroid and xenobiotic receptor (SXR) in humans, is a key ligand-dependent transcription factor responsible for the regulation of xenobiotic, steroid, and bile acid metabolism. The ligand-binding domain is principally responsible for species-specific activation of NR1I2 in response to xenobiotic exposure.ObjectivesOur objective in this study was to create a common framework for screening NR1I2 orthologs from a variety of model species against environmentally relevant xenobiotics and to evaluate the results in light of using these species as predictors of xenobiotic disposition and for assessment of environmental health risk.MethodsSixteen chimeric fusion plasmid vectors expressing the Gal4 DNA-binding domain and species-specific NR1I2 ligand-binding domain were screened for activation against a spectrum of 27 xenobiotic compounds using a standardized cotransfection receptor activation assay.ResultsNR1I2 orthologs were activated by various ligands in a dose-dependent manner. Closely related species show broadly similar patterns of activation; however, considerable variation to individual compounds exists, even among species varying in only a few amino acid residues.ConclusionsInterspecies variation in NR1I2 activation by various ligands can be screened through the use of in vitro NR1I2 activation assays and should be taken into account when choosing appropriate animal models for assessing environmental health risk.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.