The FLUXNET2015 dataset provides ecosystem-scale data on CO 2 , water, and energy exchange between the biosphere and the atmosphere, and other meteorological and biological measurements, from 212 sites around the globe (over 1500 site-years, up to and including year 2014). These sites, independently managed and operated, voluntarily contributed their data to create global datasets. Data were quality controlled and processed using uniform methods, to improve consistency and intercomparability across sites. The dataset is already being used in a number of applications, including ecophysiology studies, remote sensing studies, and development of ecosystem and Earth system models. FLUXNET2015 includes derived-data products, such as gap-filled time series, ecosystem respiration and photosynthetic uptake estimates, estimation of uncertainties, and metadata about the measurements, presented for the first time in this paper. In addition, 206 of these sites are for the first time distributed under a Creative Commons (CC-BY 4.0) license. This paper details this enhanced dataset and the processing methods, now made available as open-source codes, making the dataset more accessible, transparent, and reproducible.
1. In a unique phenomenon restricted to the ever wet forests of Southeast Asia, hundreds of species from dozens of plant families reproduce synchronously at irregular, multi-year intervals. The proximate environmental cues that synchronize these general flowering events have not been evaluated systematically because there have been no long-term, high temporal resolution, species-level records from the region.2. We present 13 years of weekly flowering records for five Shorea species as well as daily temperature and rainfall records from the Pasoh Forest Reserve, Peninsular Malaysia. We constructed models to evaluate hypothesized relationships between flowering and cool temperature, drought, and additive and synergistic effects of cool temperature and drought for each species. Model parameters include periods of time for floral cue accumulation and flower development and temperature and/ or rainfall thresholds required for floral initiation. Parameters estimated using flowering observations from 2001 to 2011 were used to forecast flowering for 2011-2014. 3. We show that drought and cool temperatures acting synergistically best explain the timing of flowering events for all Shorea species in the section Mutica and forecast the largest general flowering event accurately. Periods estimated for signal accumulation ranged from 54 to 90 days among species. Periods estimated for flowers to develop ranged between 43 and 96 days and closely followed the interspecific sequence of flowering in the Shorea species. Drought and temperature thresholds also varied among species, with Shorea maxwelliana requiring the most severe drought and Shorea leprosula the lowest temperatures. 4. Synthesis. Our results indicate that cool temperatures and low rainfall occurring on seasonal time-scales of about 2-3 months rather than brief cold snaps or brief droughts best explain general flowering in Shorea species at the Pasoh | 587 Journal of Ecology CHEN Et al.
Methods for accurately measuring biophysical parameters are a key component for quantitative evaluation regarding to various forest applications. Conventional in situ measurements of these parameters take time and expense, encountering difficultness at locations with heterogeneous microtopography. To obtain precise biophysical data in such situations, we deployed an unmanned aerial system (UAS) multirotor drone in a cypress forest in a mountainous area of Japan. The structure from motion (SfM) method was used to construct a three-dimensional (3D) model of the forest (tree) structures from aerial photos. Tree height was estimated from the 3D model and compared to in situ ground data. We also analyzed the relationships between a biophysical parameter, diameter at breast height (DBH), of individual trees with canopy width and area measured from orthorectified images. Despite the constraints of ground exposure in a highly dense forest area, tree height was estimated at an accuracy of root mean square error = 1.712 m for observed tree heights ranging from 16 to 24 m. DBH was highly correlated with canopy width (R 2 = 0.7786) and canopy area (R 2 = 0.7923), where DBH ranged from 11 to 58 cm. The results of estimating forest parameters indicate that drone-based remote-sensing methods can be utilized to accurately analyze the spatial extent of forest structures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.