Complexation of nickel(II) bromide with tert-butyl 5-phenyl-2-pyridyl nitroxide (phpyNO) gave two morphs of doubly chelated [Ni(phpyNO)2Br2] as a 2p–3d–2p heterospin triad. The α phase crystallizes in the orthorhombic space group Pbcn. An asymmetric unit involves a half-molecule. The torsion angle around Ni–O–N–C2py is as small as 6.5(3)° at 100 K and 7.0(6)° at 400 K, guaranteeing an orthogonal arrangement between the magnetic radical π* and metal 3d x 2–y 2 and 3d z 2 orbitals. Magnetic study revealed the high-spin ground state with the exchange coupling constant 2J/k B = +288(5) K, on the basis of a symmetrical spin Hamiltonian. The β phase crystallizes in the monoclinic space group P21/n. The whole molecule is an independent unit. The Ni–O–N–C2py torsion angles are 24.2(6) and 37.2(5)° at 100 K and 10.4(7) and 25.9(6)° at 400 K. A magnetic study revealed a very gradual and nonhysteretic spin transition. An analysis based on the van’t Hoff equation gave a successful fit with the spin-crossover temperature of 134(1) K, although the susceptibility did not reach the theoretical high-spin value at 400 K. Density functional theory calculation on the β phase showed ground S total = 0 in the low-temperature structure while S total = 2 in the high-temperature structure, supporting the synchronized exchange coupling switch on both sides. Consequently, the β phase can be recognized as an “incomplete spin crossover” material, as a result of conflicting thermal depopulation effects in a high-temperature region.
The exchange coupling in [Ni(phpyNO)2(NCS)2] is strongly antiferromagnetic in a low-temperature structure whilst moderately antiferromagnetic in a high-temperature structure.
Heterospin systems have a great advantage in frontier orbital engineering since they utilize a wide diversity of paramagnetic chromophores and almost infinite combinations and mutual geometries. Strong exchange couplings are expected in 3d–2p heterospin compounds, where the nitroxide (aminoxyl) oxygen atom has a direct coordination bond with a nickel(II) ion. Complex formation of nickel(II) salts and tert-butyl 2-pyridyl nitroxides afforded a discrete 2p–3d–2p triad. Ferromagnetic coupling is favored when the magnetic orbitals, nickel(II) dσ and radical π*, are arranged in a strictly orthogonal fashion, namely, a planar coordination structure is characterized. In contrast, a severe twist around the coordination bond gives an orbital overlap, resulting in antiferromagnetic coupling. Non-chelatable nitroxide ligands are available for highly twisted and practically diamagnetic complexes. Here, the Ni–O–N–Csp2 torsion (dihedral) angle is supposed to be a useful metric to describe the nickel ion dislocated out of the radical π* nodal plane. Spin-transition complexes exhibited a planar coordination structure in a high-temperature phase and a nonplanar structure in a low-temperature phase. The gradual spin transition is described as a spin equilibrium obeying the van’t Hoff law. Density functional theory calculation indicates that the energy level crossing of the high- and low-spin states. The optimized structures of diamagnetic and high-spin states well agreed with the experimental large and small torsions, respectively. The novel mechanism of the present spin transition lies in the ferro-/antiferromagnetic coupling switch. The entropy-driven mechanism is plausible after combining the results of the related copper(II)-nitroxide compounds. Attention must be paid to the coupling parameter J as a variable of temperature in the magnetic analysis of such spin-transition materials. For future work, the exchange coupling may be tuned by chemical modification and external stimulus, because it has been clarified that the parameter is sensitive to the coordination structure and actually varies from 2J/kB = +400 K to −1400 K.
Complex formation of nickel(II) tetrafluoroborate and tert-butyl 5-phenyl-2-pyridyl nitroxide (phpyNO) in the presence of sodium cyanate gave a discrete molecule [Ni(phpyNO)2(X)2] (X = NCO). The Ni-O-N-Csp2 torsion angles were reduced on heating; 33.5(5)° and 36.2(4)° at 100 K vs. 25.7(10)° and 32.3(11)° at 400 K. The magnetic behavior was almost diamagnetic below ca. 100 K, and the χmT value reached 1.04 cm3 K mol−1 at 400 K. An analysis using the van’t Hoff equation indicates a possible spin transition at T1/2 >> 400 K. Density functional theory calculation shows that the singlet-quintet energy gap decreases as the structural change from 100 to 400 K. The geometry optimization results suggest that the diamagnetic state has the Ni-O-N-Csp2 torsion angles of 32.7° while the Stotal = 2 state has those of 11.9°. The latter could not be experimentally observed even at 400 K. After overviewing the results on the known X = Br, Cl, and NCS derivatives, the magnetic behavior is described in a common phase diagram. The Br and Cl compounds undergo the energy level crossing of the high-/low-spin states, but the NCS and NCO compounds do not in a conventional experimental temperature range. The spin transition mechanism in this series involves the exchange coupling switch between ferro- and antiferromagnetic interactions, corresponding to the high- and low-spin phases, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.