In order to achieve cost reduction or shrinkage of power devices, an internal body diode, which forms in a MOSFET parasitically, can be designed as a free-wheeling diode in substitution for an external Schottky barrier diode (SBD). However, in a SiC p-i-n diode, forward current stress causes reliability degradation due to expansion of the electron-hole recombination-induced stacking faults. Applying the process optimization of the epitaxial layer for the reduction of recombination-induced stacking faults and the body diode screening method to 3.3 kV SiC-MOSFETs, we obtained more stable devices under forward current operation.
The relationship between stacking faults and the position of the leakage current inside a triangular defect was analyzed. Triangular defects are categorized into two types on the basis of the current–voltage (I–V) characteristics. It was found that stacking faults (SFs) of the 3C structure inside a triangular defect increase leakage current at a reverse bias voltage as well as forward current at a low bias voltage, while SFs of the SF(4,2) structure inside a triangular defect do not lead to deterioration of device performance in this case.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.