With increasing age, the competence of the immune system to fight infections and tumors declines. Age-dependent changes have been mostly described for human CD8 T cells, raising the question of whether the response patterns for CD4 T cells are different. Gene expression arrays of memory CD4 T cells yielded a similar age-induced fingerprint as has been described for CD8 T cells. In crosssectional studies, the phenotypic changes were not qualitatively different for CD4 and CD8 T cells, but occurred much more frequently in CD8 T cells. Homeostatic stability partially explained this lesser age sensitivity of CD4 T cells. With aging, naïve and central memory CD8 T cells were lost at the expense of phenotypically distinct CD8 effector T cells, while effector CD4 T cells did not accumulate. However, phenotypic shifts on central memory T cells were also more pronounced in CD8 T cells. This distinct stability in cell surface marker expression can be reproduced in vitro. The data show that CD8 T cells are age sensitive by at least two partially independent mechanisms: fragile homeostatic control and gene expression instability in a large set of regulatory cell surface molecules.
Inkjet printers are capable of printing at high resolution by ejecting extremely small ink drops. Established printing technology will be able to seed living cells, at micrometer resolution, in arrangements similar to biological tissues. We describe the use of a biocompatible inkjet head and our investigation of the feasibility of microseeding with living cells. Living cells are easily damaged by heat; therefore, we used an electrostatically driven inkjet system that was able to eject ink without generating significant heat. Bovine vascular endothelial cells were prepared and suspended in culture medium, and the cell suspension was used as "ink" and ejected onto culture disks. Microscopic observation showed that the endothelial cells were situated in the ejected dots in the medium, and that the number of cells in each dot was dependent on the concentration of the cell suspension and ejection frequency chosen. After the ejected cells were incubated for a few hours, they adhered to the culture disks. Using our non-heat-generating, electrostatically driven inkjet system, living cells were safely ejected onto culture disks. This microseeding technique with living cells has the potential to advance the field of tissue engineering.
Summary Paget's Disease (PD) is characterized by abnormal osteoclasts (OCL) that secrete high IL-6 levels and induce exuberant bone formation. Because measles virus nucleocapsid gene (MVNP) and the p62P392L mutation are implicated in PD, marrows from 12 PD patients harboring p62P392L and 8 normals were tested for MVNP expression and pagetic OCL formation. 8/12 patients expressed MVNP and formed pagetic OCL in vitro, which were inhibited by antisense-MVNP. 4/12 patients lacked MVNP and formed normal OCL that were hyper-responsive to RANKL but unaffected by antisense-MVNP. Similarly, mice expressing only p62P394L formed normal OCL, while mice expressing MVNP in OCL, with or without p62P394L, developed pagetic OCL and expressed high IL-6 levels dependent on p38MAPK activation. IL-6 deficiency in MVNP mice abrogated pagetic OCL development in vitro. Mice co-expressing MVNP and p62P394L developed dramatic Paget's-like bone lesions. These results suggest that p62P394L and IL-6 induction by MVNP play key roles in PD.
Paget disease is the most exaggerated example of abnormal bone remodeling, with the primary cellular abnormality in the osteoclast. Mutations in the p62 (sequestosome 1) gene occur in one-third of patients with familial Paget disease and in a minority of patients with sporadic Paget disease, with the P392L amino acid substitution being the most commonly observed mutation. However, it is unknown how p62 P392L mutation contributes to the development of this disease. To determine the effects of p62 P392L expression on osteoclasts in vitro and in vivo, we introduced either the p62 P392L or WT p62 gene into normal osteoclast precursors and targeted p62 P392L expression to the osteoclast lineage in transgenic mice. p62 P392L -transduced osteoclast precursors were hyperresponsive to receptor activator of NF-κB ligand (RANKL) and TNF-α and showed increased NF-κB signaling but did not demonstrate increased 1,25-(OH) 2 D 3 responsivity, TAF II -17 expression, or nuclear number per osteoclast. Mice expressing p62 P392L developed increased osteoclast numbers and progressive bone loss, but osteoblast numbers were not coordinately increased, as is seen in Paget disease. These results indicate that p62 P392L expression on osteoclasts is not sufficient to induce the full pagetic phenotype but suggest that p62 mutations cause a predisposition to the development of Paget disease by increasing the sensitivity of osteoclast precursors to osteoclastogenic cytokines.
Paget's disease of bone (PDB) is the second most common bone disease and is characterized by focal bone lesions which contain large numbers of abnormal osteoclasts (OCLs) and very active normal osteoblasts in a highly osteoclastogenic marrow microenvironment. The etiology of PDB is not well understood and both environmental and genetic causes have been implicated in its pathogenesis. Mutations in the SQSTM1/p62 gene have been identified in up to 30% of Paget's patients. To determine if p62 mutation is sufficient to induce PDB, we generated mice harboring a mutation causing a P-to-L (proline-to-leucine) substitution at residue 394 (the murine equivalent of human p62(P392L), the most common PDB-associated mutation). Bone marrow cultures from p62(P394L) mice formed increased numbers of OCLs in response to receptor activator of NF-kappaB ligand (RANKL), tumor necrosis factor alpha (TNF-alpha) or 1alpha,25-(OH)(2)D(3), similar to PDB patients. However, purified p62(P394L) OCL precursors depleted of stromal cells were no longer hyper-responsive to 1alpha,25-(OH)(2)D(3), suggesting effects of the p62(P394L) mutation on the marrow microenvironment in addition to direct effects on OCLs. Co-cultures of purified p62(P394L) stromal cells with either wild-type (WT) or p62(P394L) OCL precursors formed more OCLs than co-cultures containing WT stromal cells due to increased RANKL production by the mutant stromal cells. However, despite the enhanced osteoclastogenic potential of both OCL precursors and marrow stromal cells, the p62(P394L) mice had histologically normal bones. These results indicate that this PDB-associated p62 mutation is not sufficient to induce PDB and suggest that additional factors acting together with p62 mutation are necessary for the development of PDB in vivo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.