The Wnt signaling pathway is an ancient and evolutionarily conserved pathway that regulates crucial aspects of cell fate determination, cell migration, cell polarity, neural patterning and organogenesis during embryonic development. The Wnts are secreted glycoproteins and comprise a large family of nineteen proteins in humans hinting to a daunting complexity of signaling regulation, function and biological output. To date major signaling branches downstream of the Fz receptor have been identified including a canonical or Wnt/β-catenin dependent pathway and the non-canonical or β-catenin-independent pathway which can be further divided into the Planar Cell Polarity and the Wnt/Ca 2+ pathways, and these branches are being actively dissected at the molecular and biochemical levels. In this review, we will summarize the most recent advances in our understanding of these Wnt signaling pathways and the role of these pathways in regulating key events during embryonic patterning and morphogenesis. IntroductionIn the modern era of molecular medicine, much effort has been placed on dissecting the signaling pathways and molecular mechanisms that control the development of an organism. This effort is deeply engrained in the modern researcher and is singly directed towards the notion that understanding the mechanisms that control normal development can exponentially increase our hopes to prevent and treat the pleiotropic pathologies that arise when these mechanisms go awry. One key pathway that much effort has been placed in delineating is the Wnt signal transduction pathway.The Wnt signaling pathway is a conserved pathway in metazoan animals. The name Wnt is resultant from a fusion of the name of the Drosophila segment polarity gene wingless and the name of the vertebrate homolog, integrated or int-1. 1 The extra-cellular Wnt signal stimulates several intra-cellular signal transduction cascades, including the canonical or Wnt/β-catenin dependent pathway and the non-canonical or β-catenin-independent pathway which can be divided into the Planar Cell Polarity pathway and the Wnt/Ca 2+ pathway. 2 Wnt proteins regulate a dizzying array of cellular processes including cell fate determination, motility, polarity, primary axis formation and organogenesis and most recently, this pathway has been implicated in stem cell renewal. As the signaling pathways that play crucial role during embryogenesis are tightly regulated, the expression of the Wnt proteins and Wnt antagonists are exquisitely restricted both temporally and spatially during development. 3 Deregulated Wnt signaling has catastrophic consequences for the developing embryo and it is now well appreciated that defective Wnt signaling is a causative factor for a number of pleiotropic human pathologies. Most notably, these pathologies include cancers of the breast, colon and skin, skeletal defects and human birth defect disorders including the most common human neural tube closure birth; spina bifida. 4 Wnt proteins are secreted glycoproteins that bind to the N-terminal extra-c...
The 14-3-3 proteins form a highly conserved family of dimeric proteins that interact with various signal transduction proteins and regulate cell cycle, apoptosis, stress response, and malignant transformation. We previously demonstrated that the  isoform of 14-3-3 proteins promotes tumorigenicity and angiogenesis of rat hepatoma K2 cells. In this study, to analyze the mechanism of 14-3-3-induced malignant transformation, yeast two-hybrid screening was performed, and a novel 14-3-3-binding factor, FBI1 (fourteen-three-three beta interactant 1), was identified. In vitro binding and co-immunoprecipitation analyses verified specific interaction of 14-3-3 with FBI1. The strong expression of FBI1 was observed in several tumor cell lines but not in non-tumor cell lines. Forced expression of antisense FBI1 in K2 cells inhibited anchorage-independent growth but had no significant effect on cell proliferation in monolayer culture. Down-regulation of FBI1 also inhibited tumorigenicity and metastasis accompanying a decrease in MMP-9 (matrix metalloproteinase-9) expression. In addition, the duration of ERK1/2 activation was curtailed in antisense FBI1-expressing K2 cells. A luciferase reporter assay revealed that the FBI1-14-3-3 complex could act as a transcriptional silencer, and MKP-1 (MAPK phosphatase-1) was one of the target genes of the FBI1-14-3-3 complex. Moreover, chromatin immunoprecipitation analysis demonstrated that FBI1 and 14-3-3 were presented on the MKP-1 promoter. These results indicate that FBI1 promotes sustained ERK1/2 activation through repression of MKP-1 transcription, resulting in promotion of tumorigenicity and metastasis.
The 14-3-3 family proteins are key regulators of various signal transduction pathways including malignant transformation. Previously, we found that the expression of the 14-3-3beta gene is deregulated as well as c-myc gene in aflatoxin B1 (AFB1)-induced rat hepatoma K1 and K2 cells. To elucidate the implication of 14-3-3beta in tumor cell growth, in this paper we analyzed the effect of forced expression of antisense 14-3-3beta RNA on the growth and tumorigenicity of K2 cells. K2 cells transfected with antisense 14-3-3beta cDNA expression vector diminished their growth ability in monolayer culture and in semi-solid medium. Expression level of vascular endothelial growth factor mRNA was also reduced in these transfectants. Tumors that formed by the transfectants in nude mice were much smaller and histologically more benign tumors, because of their decreased level of mitosis compared with those of the parental cells. Frequency of apoptosis detected by terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling assay was increased in the transfectant-derived tumors accompanying the inhibition of angiogenesis. In addition, over-expression of 14-3-3beta mRNA was observed in various murine tumor cell lines. These results suggest that 14-3-3beta gene plays a pivotal role in abnormal growth of tumor cells in vitro and in vivo.
During gastrulation, cells in the dorsal marginal zone polarize, elongate, align and intercalate to establish the physical body axis of the developing embryo. Here we demonstrate that the bifunctional channel-kinase TRPM7 is specifically required for vertebrate gastrulation. TRPM7 is temporally expressed maternally and throughout development, and is spatially enriched in tissues undergoing convergent extension during gastrulation. Functional studies reveal that TRPM7’s ion channel, but not its kinase, specifically affects cell polarity and convergent extension movements during gastrulation, independent of mesodermal specification. During gastrulation, the non-canonical Wnt pathway via Dishevelled (Dvl) orchestrates the activities of the GTPases Rho and Rac to control convergent extension movements. We find that TRPM7 functions synergistically with non-canonical Wnt signaling to regulate Rac activity. The phenotype caused by depletion of the Ca2+- and Mg2+-permeant TRPM7 is suppressed by expression of a dominant negative form of Rac, as well as by Mg2+ supplementation or by expression of the Mg2+ transporter SLC41A2. Together, these studies demonstrate an essential role for the ion channel TRPM7 and Mg2+ in Rac-dependent polarized cell movements during vertebrate gastrulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.