Purpose Pigs expressing neither galactose-α1,3-galactose (Gal) nor N-glycolylneuraminic acid (NeuGc) take xenotransplantation one step closer to the clinic. Our aims were (i) to document the lack of NeuGc expression on corneas and aortas, and cultured endothelial cells (aortic [AECs]; corneal [CECs]) of GTKO/NeuGcKO pigs, and (ii) to investigate whether the absence of NeuGc reduced human antibody binding to the tissues and cells. Methods Wild-type (WT), GTKO, and GTKO/NeuGcKO pig were used for the study. Human tissues and cultured cells were negative controls. Immunofluorescence staining was performed using anti-Gal and anti-NeuGc antibodies, and to determine human IgM and IgG binding to tissues. Flow cytometric analysis was used to determine Gal and NeuGc expression on cultured CECs and AECs and to measure human IgM/IgG binding to these cells. Results Both Gal and NeuGc were detected on WT pig corneas and aortas. Although GTKO pigs expressed NeuGc, neither human nor GTKO/NeuGcKO pigs expressed Gal or NeuGc. Human IgM/IgG binding to corneas and aortas from GTKO and GTKO/NeuGcKO pigs was reduced compared to binding to WT pigs. Human antibody binding to GTKO/NeuGcKO AECs was significantly less than to GTKO AECs, but there was no significant difference in binding between GTKO and GTKO/NeuGcKO CECs. Conclusions The absence of NeuGc on GTKO aortic tissue and AECs is associated with reduced human antibody binding, and possibly will provide better outcome in clinical xenotransplantation using vascularized organs. For clinical corneal xenotransplantation, the absence of NeuGc expression on GTKO/NeuGcKO pig corneas may not prove an advantage over GTKO corneas.
The ubiquitin-proteasome pathway plays an important role in the regulation of cellular proteins. As an alternative to the proteasome itself, recent research has focused on methods to modulate the regulation of deubiquitinating enzymes (DUBs) upstream of the proteasome, identifying DUBs as novel therapeutic targets in breast, endometrial, and prostate cancers, along with multiple myeloma. bAP15, an inhibitor of the 19S proteasome DUBs UCHL5 and USP14, results in cell growth inhibition in several human cancers; however, the mechanism remains poorly understood in ovarian cancer. Here, we found that aberrant UCHL5 expression predicted shorter progression-free survival (PFS) in a cohort of 1435 patients with ovarian cancer described in the Gene Expression Omnibus and The Cancer Genome Atlas databases. The subgroup of patients with TP53 mutations was significantly more likely to exhibit poor PFS (p <0.001). Moreover, we found bAP15 could suppress TP53-mutant ovarian cancer cell survival by regulating TGF-β signaling through inhibiting UCHL5 expression and dephosphorylating Smad2, consequently inducing apoptosis. bAP15 (2.5 and 5.0 mg/kg) also exerted significant anti-tumor effect on nude mice bearing subcutaneous SKOV3 xenografts. As activated TGF-β signaling is involved in ovarian cancer progression, these findings suggest that UCHL5 inhibition offers potential opportunities for a novel targeted therapy against TGF-β-activated ovarian cancer.
Introduction Recent reports of long-term survival after wild-type (WT) pig-to-monkey corneal xenotransplantation are encouraging. We experienced the rapid development of retrocorneal membranes, a rare complication after corneal allotransplantation (though seen in infants and young children). The original specific aim of the study was to determine the factors associated with successful (young) pig corneal transplantation in monkeys. However, when it was obvious that retrocorneal membranes rapidly developed, our aims became to determine the factors involved in its development after both WT and GE pig corneal xenotransplantation and to investigate the characteristics of the retrocorneal membrane. Methods Rhesus monkeys were recipients of penetrating keratoplasty using WT and GE pigs (n=2, respectively, 1–3 months-old). Local/systemic steroids were administered for 3 months. Grafts were evaluated by slit-lamp for corneal transparency, edema, and neovascularization. Hematoxylin and eosin, Masson trichrome staining, and immunohistochemical analysis were performed. Gal staining was also carried out to distinguish the origin of the membrane. Results All penetrating keratoplasty recipients developed fibrous retrocorneal membranes in the early post-transplantation period, regardless of whether the graft was from a WT or GE pig. There were no features of rejection, with no cell infiltrate in the graft or anterior chamber during the 3 months follow-up. There was no difference in the clinical course between the two groups (WT or GE corneas). Immunohistochemistry indicated that the retrocorneal membranes were CK-negative, α-SMA-positive, and vimentin-positive, suggesting that they were of fibrous (keratocytic) origin. Also, the membrane was Gal positive, suggesting that it is derived from pig cornea. Conclusions Following pig-to-monkey corneal xenotransplantation, we report that retrocorneal membranes are derived from donor pig keratocytes. Prevention of retrocorneal membranes will be necessary to achieve successful corneal xenotransplantation.
Although the cornea is avascular, antibodies in primate serum can bind to pig antigens, especially on epithelial cells and stromal collagen. Although the binding to entire GTKO corneas was weaker than that to WT corneas, deletion of the expression of NeuGc and expression of human complement-regulatory proteins in the pig cornea will be important if prolonged clinical corneal xenograft survival is to be achieved.
While the incidence of endometrial cancer continues to rise, the therapeutic options remain limited for advanced or recurrent cases, and most cases are resistant to therapy. The anti-tumor effect of many chemotherapeutic drugs and radiotherapy depends on the induction of DNA damage in cancer cells; thus, activation of DNA damage response (DDR) pathways is considered an important factor affecting resistance to therapy. When some DDR pathways are inactivated, inhibition of other DDR pathways can induce cancer-specific synthetic lethality. Therefore, DDR pathways are considered as promising candidates for molecular-targeted therapy for cancer. The crosstalking ataxia telangiectasia mutated and Rad3 related and checkpoint kinase 1 (ATR-Chk1) and ataxia telangiectasia mutated and Rad3 related and checkpoint kinase 2 (ATM-Chk2) pathways are the main pathways of DNA damage response. In this study, we investigated the anti-tumor effect of inhibitors of these pathways in vitro by assessing the effect of the combination of ATM or ATR inhibitors and conventional DNA-damaging therapy (doxorubicin (DXR), cisplatin (CDDP), and irradiation) on endometrial cancer cells. Both the inhibitors enhanced the sensitivity of cells to DXR, CDDP, and irradiation. Moreover, the combination of ATR and Chk1 inhibitors induced DNA damage in endometrial cancer cells and inhibited cell proliferation synergistically. Therefore, these molecular therapies targeting DNA damage response pathways are promising new treatment strategies for endometrial cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.