Purpose: NF-E2-related factor 2 (Nrf2), a key transcription regulator for antioxidant and detoxification enzymes, is abundantly expressed in cancer cells. In this study, therefore, the role of Nrf2 in cancer cell proliferation and resistance to anticancer drugs was investigated. Experimental Design: We used three human lung cancer cell lines with different degrees of Nrf2 activation: Nrf2 was highly activated in A549 cells, slightly activated in NCI-H292 cells, and not activated in LC-AI cells under unstimulated conditions. Result: A549 cells showed higher resistance to cisplatin compared with NCI-H292 and LC-AI cells. The resistance to cisplatin was significantly inhibited in A549 but not in NCI-H292 or LC-AI cells by knockdown of Nrf2 with its specific small interfering RNA (Nrf2-siRNA). The cell proliferation was also most prominently inhibited in A549 cells by treatment with Nrf2-siRNA. In A549 cells, the expression of self-defense genes, such as antioxidant enzymes, phase II detoxifying enzymes, and drug efflux pumps, was significantly reduced by Nrf2-siRNA concomitant with a reduction of the cellular glutathione level. The degree of DNA crosslink and apoptosis after treatment with cisplatin was significantly elevated in A549 cells by Nrf2-siRNA. Knockdown of Nrf2 arrested the cell cycle at G 1 phase with a reduction of the phosphorylated form of retinoblastoma protein in A549 and NCI-H292 cells but not in LC-AI cells. Conclusion: These results indicate that the Nrf2 system is essential for both cancer cell proliferation and resistance to anticancer drugs. Thus, Nrf2 might be a potential target to enhance the effect of anticancer drugs.
Inflammation, protease/anti-protease imbalance and oxidative stress play important roles in the pathogenesis of emphysema. Nrf2 counteracts oxidative tissue damage and inflammation through transcriptional activation via the anti-oxidant responsive element (ARE). To clarify the protective role of Nrf2 in the development of emphysema, the susceptibility of Nrf2-knockout mice to cigarette smoke (CS)-induced emphysema was examined. In Nrf2-knockout mice, emphysema was first observed at 8 weeks and exacerbated by 16 weeks following CS-exposure, whereas no pathological abnormalities were observed in wild-type mice. Neutrophilic lung inflammation and permeability lung damage were significantly enhanced in Nrf2-knockout mice 8 weeks after CSexposure. Importantly, neutrophil elastase activity in bronchoalveolar lavage fluids was markedly higher in Nrf2-knockout mice preceding the pronounced neutrophil accumulation. The expression of secretory leukoprotease inhibitor, a potent inhibitor of neutrophil elastase, was inducible in wild-type, but not in Nrf2-knockout mice. This protease/anti-protease imbalance, together with the lack of inducible expression of ARE-regulated anti-oxidant/anti-inflammatory genes, may explain the predisposition of Nrf2-knockout mice to neutrophilic inflammation. Indeed, specific activators of Nrf2 induced the expression of the SLPI gene in macrophages. These results indicate that Nrf2 protects against the development of emphysema by regulating not only the oxidant/ anti-oxidant balance, but also inflammation and the protease/anti-protease balance.
Emphysema is one of the major pathological abnormalities associated with chronic obstructive pulmonary disease. The protease/antiprotease imbalance and inflammation resulting from oxidative stress have been attributed to the pathogenesis of emphysema. Nrf2 is believed to protect against oxidative tissue damage through the transcriptional activation of a battery of antioxidant enzymes. In this study, we investigated the protective role of Nrf2 in the development of emphysema using elastase-induced emphysema as our model system. We found that elastase-provoked emphysema was markedly exacerbated in Nrf2-knockout (KO) mice compared with wild-type mice. The severity of emphysema in Nrf2-KO mice correlated intimately with the degree of lung inflammation in the initial stage of elastase treatment. The highly inducible expression of antioxidant and antiprotease genes observed in wild-type alveolar macrophages was significantly attenuated in the lungs of Nrf2-KO mice. Interestingly, transplantation of wild-type bone marrow cells into Nrf2-KO mice retarded the development of initial lung inflammation and subsequent emphysema, and this improvement correlated well with the appearance of macrophages expressing Nrf2-regulated antiprotease and antioxidant genes. Thus, Nrf2 appears to exert its protective effects through the transcriptional activation of antiprotease and antioxidant genes in alveolar macrophages.
We previously demonstrated that the transcription factor NF-E2-related factor2 (Nrf2), expressed abundantly in non-small-cell lung cancer (NSCLC) cells, plays a pivotal role in the proliferation and chemoresistance of NSCLC. Here we show that Nrf2-mediated NSCLC cell proliferation is dually regulated by epidermal growth factor receptor (EGFR) signaling and an Nrf2 repressor protein Keap1 (Kelch-like ECH-associated protein-1). NSCLC cells expressing wild-type EGFR and Keap1 genes show enhanced proliferation on stimulation with EGFR ligand under non-stress conditions. Exposure to cigarette smoke extract (CSE) enhanced cell proliferation by modification of the Nrf2/Keap1 interaction. Although EGFR-tyrosine kinase inhibitor (TKI) inhibited the proliferation of these cells, exposure to CSE attenuated its efficacy. In NSCLC cells with Keap1 gene mutations, Nrf2 was constitutively activated owing to dysfunction of Keap1 and cells proliferated independently of EGFR signaling. Furthermore, EGFR-TKI was unable to inhibit their proliferation. In NSCLC cells with EGFR gene mutations, Nrf2 was constitutively activated by EGFR signaling. In these cells, proliferation was largely dependent on the EGFR signaling pathway. Although these cells were highly sensitive to EGFR-TKI, exposure to CSE or knockdown of Keap1 mRNA reduced sensitivity to EGFR-TKI. We found a case of NSCLC showing resistance to EGFR-TKI despite having EGFR-TKI-sensitive EGFR gene mutation because of dysfunctional mutation in Keap1 gene. Results indicate that oxidative stress reduces the anticancer effects of EGFR-TKI in wild-type Keap1 NSCLC cells. Analysis of Keap1 dysfunction may become a novel molecular marker to predict resistance to EGFR-TKI in NSCLC cells having EGFR-TKI-sensitive EGFR mutations. Finally, as the downstream molecule of both EGFR and Keap1 signaling, Nrf2 is an important molecular target for the treatment of NSCLC, where cells have mutations in EGFR, KRAS or Keap1 genes.
BackgroundPulmonary fibrosis is a progressive and lethal disorder. Although the precise mechanisms of pulmonary fibrosis are not fully understood, oxidant/antioxidant and Th1/Th2 balances may play an important role in many of the processes of inflammation and fibrosis. The transcription factor Nrf2 acts as a critical regulator for various inflammatory and immune responses by controlling oxidative stress. We therefore investigated the protective role of Nrf2 against the development of pulmonary fibrosis.MethodsTo generate pulmonary fibrosis, both wild-type C57BL/6 mice and Nrf2-deficient mice of the same background were administered bleomycin intratracheally.ResultsThe survival of Nrf2-deficient mice after bleomycin administration was significantly lower than that of wild-type mice. The degree of bleomycin-induced initial pulmonary inflammation and pulmonary fibrosis was much more severe in Nrf2-deficient mice than in wild-type mice. The expression of antioxidant enzymes and phase II detoxifying enzymes was significantly reduced in the lungs of Nrf2-deficient mice, concomitant with an elevation of lung 8-isoprostane level, compared with wild-type mice. The expression of Th2 cytokines, such as interleukin-4 and interleukin-13, was significantly elevated in the lungs of Nrf2-deficient mice with an increase in the number of Th2 cells that express GATA-binding protein 3.ConclusionsThe results indicated that Nrf2 protects against the development of pulmonary fibrosis by regulating the cellular redox level and lung Th1/Th2 balance. Thus, Nrf2 might be an important genetic factor in the determination of susceptibility to pulmonary fibrosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.