ABSTRACT. In adult mouse, the mRNA corresponding to the alpha1 chain of type XII collagen (alpha 1(XII)) is predominantly detected in the bone. Additionally, murine osteoblastic cells, MC3T3-E1, increased the mRNA level of alpha 1(XII) response to the mechanical strain in the stretch culture system. Cyclic stretch stress resulted in a threefold increase in mRNA level of alpha 1(XII) as compared to the control experiment in MC3T3-E1. Transient transfection assays employing a reporter construct, together with site-directed mutagenesis studies, suggested that the AP-1 binding site in the first exon of mouse alpha 1(XII) gene is important for stretch stressmediated upregulation of alpha 1(XII) expression. Electrophoretic mobility shift assay and associated antibody supershift experiments showed that stretch stress promotes the binding of c-Jun and JunD. Further chromatin immunoprecipitation experiments confirmed the participation of these transcription factors in the region. Also, the exogenous induction of the dominant negative form of c-Jun canceled the effect of stretch stress on the stimulation of the alpha 1(XII) gene. Here, we reported a potential responsive element to the stretch stress in mouse alpha 1(XII) gene. These data will provide new information on the mechanical strain-mediated transcriptional control of alpha 1(XII)-mediated fibrillogenesis in the bone.
The continuous exposure of antimicrotubule drugs to tumors often results in the emergence of drug-resistant tumor cells with altered expression of several B-tubulin isotypes. We found that Vinca alkaloid enhanced expression of class II B-tubulin isotype (mTUBB2) in mouse B16F10 melanoma cells via alteration of the tumor suppressor p53 protein. Vincristine treatment stimulated an increase in mTUBB2 mRNA expression and promoted accumulation of this isotype around the nuclei. Transient transfection assays employing a reporter construct, together with site-directed mutagenesis studies, suggested that the p53-binding site found in the first intron was a critical region for mTUBB2 expression. Electrophoretic mobility shift assay and associated antibody supershift experiments showed that vincristine promoted release of p53 protein from the binding site. In addition, exogenous induction of TAp63; (p51A), a homologue of p53, canceled the effect of vincristine on mTUBB2 expression. These results suggest that p53 protein may function as a suppressor of mTUBB2 expression and vincristine-mediated inhibition of p53 binding results in enhanced mTUBB2 expression. This phenomenon could be related with the emergence of drug-resistant tumor cells induced by Vinca alkaloid and may participate in determining the fate of these cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.